當前位置:首頁 > 電源 > 電源
[導(dǎo)讀]0 引言移相全橋變換器工作在零壓、零流開關(guān)方式時(Zero -voltage and zero -current switching,ZVZCS),超前橋臂實現(xiàn)ZVS,滯后橋臂實現(xiàn)ZCS。移相全橋ZVZCS PWM 方式和ZVS

0 引言

移相全橋變換器工作在零壓、零流開關(guān)方式時(Zero -voltage and zero -current switching,ZVZCS),超前橋臂實現(xiàn)ZVS,滯后橋臂實現(xiàn)ZCS。

移相全橋ZVZCS PWM 方式和ZVS PWM 方式相比,可以大幅降低電路內(nèi)部的環(huán)流損耗、減小二次側(cè)占空比丟失、提高變換效率,且可在較大的輸入電壓和負載變化范圍內(nèi)實現(xiàn)軟開關(guān),其在中、大功率的場合得到廣泛的應(yīng)用。

傳統(tǒng)的移相全橋ZVZCS PWM 變換器的主開關(guān)管或者用MOSFET[1],或者用IGBT[2,3]。不論哪種結(jié)構(gòu),都不能使開關(guān)管工作在最佳的軟開關(guān)狀態(tài):前者滯后橋臂的MOSFET 寄生輸出電容較大,在開通瞬間會產(chǎn)生很大的電流尖峰,增加管子開通損耗,嚴重影響變換器的安全可靠性;后者因超前橋臂的IGBT工作在ZVS 方式,關(guān)斷期間的拖尾電流使得開關(guān)頻率不能太高,通常不超過30 kHz[2,3]。

本文提出一種超前橋臂采用MOSFET,而滯后橋臂應(yīng)用IGBT 的新穎移相全橋ZVZCS PWMDC-DC變換器,在實現(xiàn)超前橋臂ZVS 和滯后橋臂ZCS的同時,使MOSFET和IGBT各自工作在最佳的軟開關(guān)方式,有效提高了變換器的功率密度及安全可靠性。

1 工作過程分析

電路拓撲如圖1 所示,和傳統(tǒng)的全橋ZVZCSPWM變換器相比,四個主開關(guān)管不再采用同類型功率管,而是超前橋臂和滯后橋臂分別采用MOS原FET、IGBT。

1.1 工作原理

圖1 所示電路的工作波形如圖2 所示。設(shè)電路初始工作狀態(tài)為功率管Q1 和Q4導(dǎo)通,輸出整流二極管D3導(dǎo)通,變壓器向負載傳輸能量,一次側(cè)電流ip給隔直電容Cb充電。在t0時刻,關(guān)斷Q1(由于電容電壓不能突變,MOS管是零電壓關(guān)斷),之后線路電感(一次側(cè)漏感及折算到一次側(cè)的濾波電感)與MOS 管結(jié)電容C1、C2諧振,使C1充電、C2放電[4]。當C2電壓諧振下降到零時(t1 時刻),Q2的反并聯(lián)二極管D2 自然導(dǎo)通,之后開通Q2 可實現(xiàn)零電壓開通。此時,變壓器一次側(cè)電壓為零,一次側(cè)電流在隔直電容電壓vcb 作用下快速復(fù)位到零(t2 時刻),隔直電容電壓達到最大值Vcbp,輸出整流二極管D3和D4同時導(dǎo)通續(xù)流。因后橋IGBT為單向功率管,一次側(cè)電流復(fù)位到零后不能反向流通。在t3時刻關(guān)斷開關(guān)管Q4,實現(xiàn)零電流關(guān)斷。

在滯后橋臂死區(qū)時間之后開通開關(guān)管Q3,因漏感作用電流不能突變,可實現(xiàn)零電流開通。Q3開通后,一次側(cè)電流從零開始反向增加,同時給隔直電容Cb 反向充電,到電流值等于折算至二次側(cè)的負載電流時(t5 時刻),二極管D3關(guān)斷,D4繼續(xù)導(dǎo)通,變壓器開始為負載提供能量,進入下半個工作周期,情況和上述過程類似,在此不再贅述。

 

 

 

 

顯然,由于MOSFET 只工作在ZVS 方式,即使其存在較大的寄生電容,也不會引起大的開通電流尖峰。且較大的寄生電容能有效抑制電壓上升率dv/dt,若另外并接電容則更有利于開關(guān)管實現(xiàn)零電壓關(guān)斷。類似地,滯后橋臂的IGBT也僅工作在ZCS 狀態(tài),關(guān)斷之前一次側(cè)電流已復(fù)位到零,管子關(guān)斷損耗很小甚至可減小到零,因此工作在ZCS 方式的IGBT 開關(guān)頻率也可以很高。另外,IGBT結(jié)電容較MOSFET 小很多,工作在ZCS 方式,不存在結(jié)電容引起的開通電流尖峰,因此,IGBT更適用于ZCS 方式。采用這種復(fù)合結(jié)構(gòu)的變換器,與單純用IGBT 做開關(guān)管相比,開關(guān)頻率可以大大提高;又較單純用MOSFET安全可靠,電磁干擾小,能更好地發(fā)揮移相全橋ZVZCS PWM DC-DC 變換器的優(yōu)勢。

1.2 二次側(cè)占空比丟失分析

二次側(cè)占空比丟失是指二次側(cè)占空比Dsec 小于一次側(cè)占空比Dp,其差值就是二次側(cè)占空比丟失部分Dloss。

從圖2可看出,占空比丟失的原因是,在一次側(cè)電流從零反向增至負載電流的一次側(cè)折算值的過程中(圖2 中的[t4,t5]和[t10,t11]時段),雖然變壓器一次側(cè)有電壓方波,但因一次側(cè)電流不足以提供負載電流,二次側(cè)兩個整流二極管D3、D4處于續(xù)流狀態(tài),二次側(cè)電壓為零,這樣就造成了二次側(cè)電壓波形丟失。因此,一次側(cè)電流上升時間t45與1/2開關(guān)周期Ts的比值就是二次側(cè)占空比丟失Dloss,即

 

 

2 關(guān)鍵參數(shù)的選擇

2.1 超前橋臂并聯(lián)電容的選擇

 

 

2.2 阻斷電容的選擇

 

 

2.3 一次側(cè)漏感的選擇

同移相全橋ZVS PWM 變換器一樣,在超前橋臂開關(guān)過程中,用來實現(xiàn)ZVS 的能量是一次側(cè)漏感能量和折算到一次側(cè)的濾波電感能量之和,一般認為濾波電感Lf 很大,因此超前橋臂容易實現(xiàn)ZVS。所以,漏感的選擇主要考慮滯后橋臂是否能實現(xiàn)ZCS,即在滯后橋開關(guān)管開關(guān)過程前使一次側(cè)電流復(fù)位到零。復(fù)位期間,一次側(cè)電流近似線性減小,即有

 

 

 

[!--empirenews.page--]

 

3 驗證實例和試驗結(jié)果分析

為了驗證所提出電路方案的正確性,用PSPICE 軟件對電路進行了仿真分析,并進行了實驗驗證。仿真和實驗所用的參數(shù)為:輸入直流電壓Vin=300 V;輸出直流電壓V0=20 V;變壓器變比n=6.5;變壓器一次側(cè)漏感Llk=2.5 滋H(根據(jù)式(12)計算值為2.55 滋H);隔直電容Cb=1.5 滋F(根據(jù)式(8)計算值為0.5 滋F);開關(guān)管并聯(lián)電容C1=C2=6.8 nF(根據(jù)式(6)計算值為10 nF,開關(guān)管結(jié)電容為2.9 nF,因此取6.8 nF);并聯(lián)二極管選取DSEI30-06A;輸出濾波電感Lf=50 滋H;輸出濾波電容Cf=5 000 滋F;開關(guān)管MOSFET選取SPW47N60S5;開關(guān)管IGBT選取IXGH30N60B;輸出整流二極管選取DSEI60-02A;開關(guān)頻率fs=80 kHz。仿真波形如圖3 所示,實驗波形如圖4所示。

從圖3(a)可以看出,超前橋臂的MOSFET 實現(xiàn)ZVS 開通和關(guān)斷;圖3(b)所示的滯后橋臂的驅(qū)動波形及電流波形表明,IGBT即使工作在80 kHz時,也可以很好的實現(xiàn)ZCS;圖3(c)表明,在隔直電容電壓vcb作用下一次側(cè)電流快速復(fù)位到零,為滯后橋臂實現(xiàn)零電流開關(guān)提供了條件;圖3(d)所示二次側(cè)電壓波形和變壓器一次側(cè)電壓波形相比,占空比丟失很小。

 

 

 

 

 

 

 

 

 

 

 

 

4 結(jié)語

本文提出的新的移相全橋ZVZCS PWM DCDC變換器的拓撲結(jié)構(gòu),綜合利用了MOSFET 和IGBT 的優(yōu)點,既保留了傳統(tǒng)ZVZCS PWM DC-DC變換器二次側(cè)占空比丟失小,在很大負載和輸入電壓變化范圍內(nèi)實現(xiàn)滯后橋臂的ZCS 等優(yōu)點,又具有較高的開關(guān)頻率。特別是隨著高速IGBT的發(fā)展,電源的頻率可以做得更高,對提高移相全橋ZVZCS PWM DC-DC 變換器的效率和功率密度等具有重要研究價值。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉