過渡至65納米工藝的FPGA具備采用更小尺寸工藝所帶來的優(yōu)勢:低成本、高性能和更強的邏輯能力。盡管這些優(yōu)勢能夠為高級系統(tǒng)設計帶來激動人心的機會,但65納米工藝節(jié)點本身也帶來了新的挑戰(zhàn)。例如,在為產品選擇FPGA時,功耗的考慮變得越來越重要。很可能下一代設計會需要在功耗預算不變(或更小)的情況下,集成更多的特性和實現更高的性能。
本文將分析功耗降低所帶來的益處,還將介紹Virtex-5器件中所采用的多種技術和結構上的革新,它們能提供功耗最低的解決方案,并且不犧牲性能。
降低功耗的好處
低功耗的FPGA設計所帶來的優(yōu)勢不僅是能滿足器件工作的散熱要求。雖然滿足元件指標對于性能和可靠性十分重要,但如何實現這一點對于系統(tǒng)成本和復雜性都有著巨大的影響。
首先,降低FPGA的功耗使設計人員能夠采用更便宜的電源,這樣的電源使用的元件數量較少,并且占用的PCB面積也較小。高性能電源系統(tǒng)的成本通常為每瓦0.5到1美元。低功耗的FPGA直接降低了系統(tǒng)的整體成本。
其次,由于功耗直接與散熱相關,低功耗使設計人員能夠使用更簡單、更便宜的熱量管理解決方案。在很多情況下,設計者將不再需要散熱器,或者只需要更小、更便宜的散熱器。
最后,由于低功耗工作意味著更少的元件和更低的器件溫度,因此將提高整個系統(tǒng)的可靠性。器件工作溫度每降低10℃,就相當于元件壽命提高了兩倍,因此對于需要高可靠性的系統(tǒng)而言,控制功耗和溫度十分重要。
功耗:挑戰(zhàn)和解決方案
FPGA(或任何半導體器件)中的總功耗等于靜態(tài)功耗和動態(tài)功耗之和。靜態(tài)功耗主要由晶體管的泄漏電流引起,即晶體管在邏輯上被關斷時,從源極“泄漏”到漏極或通過柵氧“泄漏”的小電流。動態(tài)功耗是器件核心或I/O在開關過程中消耗的能量,與頻率相關。
靜態(tài)功耗
在縮小晶體管尺寸時(例如,從90納米到65納米),泄漏電流將會增大。新工藝節(jié)點所使用的短溝長和薄柵氧使電流更容易從晶體管的溝道區(qū)或通過柵氧泄漏。
在90納米Virtex-4系列產品中,賽靈思公司使用了“三柵極氧化層”的工藝技術,向電路設計者提供了一種強有力的阻止漏電工具。在前幾代FPGA中,使用兩種柵氧厚度:薄柵氧用于FPGA核心中高性能、低工作電壓的晶體管,而厚柵氧用于I/O模塊中尺寸較大,需要承受大電壓的晶體管。簡言之,“三柵極氧化層”指增加一種中間厚度柵氧的晶體管,它的漏電比薄柵氧的核心晶體管要小得多。
“中間柵氧”的晶體管用在器件核心外圍非關鍵性能的電路(像設置存儲器)或不需要對變化的柵壓進行快速開關響應的電路(像傳輸門)中。薄柵氧、漏電最大的晶體管只保留在需要快速開關速度的路徑部分。結果,總的器件漏電大幅減小,同時性能比上一代FPGA有很大提高。
三柵極氧化層工藝使Virtex-4器件比競爭性90納米FPGA在靜態(tài)功耗上平均減少了超過70%。這一結果非常成功,因此Virtex-5系列產品中大量使用了這一技術,在65納米工藝節(jié)點上降低漏電。[!--empirenews.page--]
盡管業(yè)界預測65納米器件的靜態(tài)功耗將會大幅提高,但是圖1顯示了三柵極氧化層工藝使65納米Virtex器件在最壞(溫度最高)工作條件下達到了與尺寸相當的90納米Virtex-4器件相同水平的靜態(tài)功耗。因此,Virtex-5系列產品和競爭性高性能FPGA產品相比,在靜態(tài)功耗方面具有真正的優(yōu)勢。
圖1:Virtex-4與Virtex-5器件在85℃時的靜態(tài)功耗比較。
動態(tài)功耗
動態(tài)功耗為65納米FPGA帶來一些其它方面的挑戰(zhàn)。動態(tài)功耗的公式為:
動態(tài)功耗=C×V2×f
其中,C是總開關電容、V是電源電壓、f是開關頻率。65納米工藝使FPGA的邏輯能力和性能比傳統(tǒng)器件有了顯著提高,也就是說更多的結點工作在更高的頻率上。如果其它方面的條件不變,動態(tài)功耗將會增大。不過對于動態(tài)功耗而言,也有一個好消息:FPGA電源電壓和結點電容通常在每一代新工藝中都會下降,從而使得動態(tài)功耗比上一代FPGA有所下降。
Virtex-5器件中,核心電源電壓(VCCINT)從Virtex-4中所使用的1.2V下降到1.0V。由于寄生電容變小(與更小的晶體管相關),以及邏輯塊間的互聯線長度變短、電容變小,使結點電容減小。此外,Virtex-5器件在金屬互聯層之間使用了一種介電常數較低的材料。
Virtex-5器件的平均結點電容比Virtex-4器件大約減小了15%。加上電壓降低帶來的好處,至少相當于將Virtex-5器件的核心動態(tài)功耗降低了35~40%。
除了因工藝尺寸縮小到65納米所致固有的35~40%動態(tài)功耗降低外,Virtex-5器件的架構創(chuàng)新還能進一步降低每個設計的功耗。大多數可增加動態(tài)功耗的結點電容,是由邏輯單元間的互連線引起的。新型Virtex-5架構從以下方面減小了連線電容:
Virtex-5的可配置邏輯模塊(CLB)是基于6輸入查找表(6-LUT)邏輯結構的,在以前的器件中是使用4輸入查找表。這意味著在每個LUT中能夠實現更多的邏輯,相當于較少的邏輯級,從而降低了對邏輯單元之間大電容連線的需求。[!--empirenews.page--]
Virtex-5的互聯結構目前包括了對角線對稱的連線,意味著每個CLB與所有相鄰的模塊(包括處于對角線位置的模塊)之間都有直接的“單一”連接。當邏輯功能之間需要連接時,這一連接更有可能成為總電容最小的“單一”連接,而以往的互聯結構對于相同的連接問題可能會需要兩個或更多結點。
6-LUT結構和改進的互聯模式,通過降低平均結點電容來降低核心動態(tài)功耗,效果遠遠超過僅使用65納米工藝所帶來的改進。圖2顯示了來自標準設計的核心動態(tài)功耗的測量結果,其中每個Virtex-5器件和Virtex-4器件中都有1,024個8位計數器。這些實際的測量結果顯示,工藝和結構上的共同優(yōu)化所帶來的動態(tài)功耗的降低超過了50%。
圖2: Virtex-4與Virtex-5 FPGA中的基準計數器設計動態(tài)功耗比較。
硬IP模塊
Virtex-5器件中所包含的硬IP模塊(專門用來實現一些常用功能的電路)數量,超過業(yè)界其他任何一款FPGA。相比使用通用FPGA邏輯而言,使用搭載這些模塊的FPGA設計來實現相同功能,可進一步降低功耗。
與FPGA結構不同,這些專用模塊中只含有為實現所要求功能而必需的晶體管,并且沒有可編程的互聯,因此互聯電容最小。較少的晶體管和較小的結點電容能降低靜態(tài)和動態(tài)功耗。因而這些專用模塊在實現相同功能的同時,功耗只有采用通用FPGA結構的十分之一。[!--empirenews.page--]
除了增加新型的專用模塊之外,Virtex-4器件中融合的很多模塊,在Virtex-5器件中都被重新設計,以增加新的特性,提高性能并降低功耗。例如,Virtex-4系列中18Kb的block RAM存儲器在Virtex-5器件中被增加到了36Kb;每個block RAM能被分成兩個獨立的18Kb的存儲器,以便向下兼容Virtex-4的設計。
有趣的是,從功耗的角度來看,每個18Kb的子模塊由兩個9Kb的物理存儲陣列構成。對于大多數block RAM配置,任何對block RAM的讀寫請求一次只需要訪問9Kb物理存儲器中的一個。因此其余的9Kb存儲器能在不被訪問時可有效地“關斷”。在過渡至65納米工藝所帶來的功耗降低的基礎上,這種結構又使功耗進一步降低了50%。這一對于9Kb模塊的乒乓式存取是新型block RAM結構所固有的,這就意味著使用這項功能不需要用戶或軟件來進行控制。它能動態(tài)并自動地進行,使所有使用block RAM的設計降低了大量的功耗,并且不會影響模塊的性能。
Virtex-5器件中專用的DSP元件也進行了大量的改進,以實現更多的功能,提高性能并降低功耗。在片與片的功耗比較中,新型的Virtex-5 DSP片比Virtex-4 DSP片降低了大約40%。這主要歸功于前面所討論的65納米工藝中電壓和電容的減小。
然而,由于Virtex-5 DSP片具有更強的功能和更廣泛的接口,許多DSP運算通過利用這些附加的功能進一步降低了功耗。在許多情況下,當使用新型DSP片的全部功能時,總功耗最高可降低75%。即使你不是在設計一個DSP產品,也能使用DSP片來實現標準的邏輯功能(計數器、加法器、桶式移位器),這樣會比在標準FPGA邏輯中實現同樣的功能節(jié)省功耗。
最后介紹經過改進的專用模塊——Virtex-5系列的LXT平臺,其中包括了幾吉位的串行收發(fā)機,能以高達3.125Gbps的速率工作。這些“SERDES”模塊在實現時著重考慮了低功耗需求。每個Virtex-5 LXT器件中的全雙工收發(fā)機在3.125Gbps的速度下的總功耗小于100mW,與Virtex-4串行收發(fā)機相比降低了大約75%。
與Virtex-4系列產品一樣,Virtex-5器件也采用了一系列工藝和架構上的革新,力求在提供盡可能低的功耗的同時,仍然使性能提高30%或更多。如圖3所示,Virtex-5系列產品的靜態(tài)功耗與Virtex-4器件相當,但比競爭性FPGA具有明顯的優(yōu)勢。
圖3:典型設計中現有FPGA器件的功耗比較。
Virtex-5器件核心的動態(tài)功耗比市場上其高性能FPGA低至少35~40%。新型6-LUT和對角線對稱的互聯等架構上的革新,使實際核心動態(tài)功耗進一步降低了50%或以上。此外,利用改進的專用模塊也進一步降低了功耗。