單片機中模糊控制系統(tǒng)的實現(xiàn)與設計
模糊控制概述
模糊控制(Fuzzy Control)是目前自動控制研究中活躍而富有成果的領域之一,模糊理論是當前能用來對信息進行軟處理的最新技術,可以將人的定性思維和判斷方法定量化 為適合計算機處理的過程,使計算機能判斷像“大概”、“輕”這樣的模糊信息。采用傳統(tǒng)控制理論,不管是用經(jīng)典控制理論還是用現(xiàn)代控制理論來設計一個控制系 統(tǒng),都需要事先知道被控對象的精確數(shù)學模型。然而,在許多情況下被控對象(或生產(chǎn)過程)的精確數(shù)學模型很難建立;像建材工業(yè)生產(chǎn)中的水泥窯、玻璃窯,化學 生產(chǎn)中的化學反應過程,食品生產(chǎn)中的發(fā)酵過程,還有眾多爐類的熱處理過程。諸如此類過程具有變量多,各種參數(shù)存在不同程度的時變性;且過程具有非線性,強 耦合,較大的隨機干擾、過程機理錯終復雜、存在各種不確定性以及現(xiàn)場測量手段不完善等特點。這些特點使得建立這一類過程的精確數(shù)學模型的難度很大,或甚至 根本辦不到。
模糊控制是基于規(guī)則的智能控制方式,它不依賴于被控對象的精確數(shù)學模型,特別適合對具有多輸入一多輸出的強耦合性、參數(shù)的時變性、嚴 重非線性與不確定性的復雜系統(tǒng)或過程的控制,且控制方法簡單,魯棒性好[1][2]。將模糊控制技術應用于一般的電子產(chǎn)品在國外已是很普遍的現(xiàn)象,單片機 常用的控制器件,把二者結合起來,可使控制器的性能指標達到最優(yōu)的目的。本文就是通過利用單片機作為平臺,圍繞模糊控制規(guī)則,以模糊推理算法作為控制系統(tǒng) 核心,開發(fā)出具有自校正能力的通用的模糊控制器。最后以一個溫度監(jiān)控系統(tǒng)為實例介紹了系統(tǒng)的軟硬件設計。
模糊控制系統(tǒng)的組成及原理
1.模糊控制系統(tǒng)的基本組成與原理
模糊控制器是模糊控制系統(tǒng)的核心部分,也是和其它控制器最大區(qū)別環(huán)節(jié)。模糊控制器有四個基本部分組成:
(1)模糊化。把輸入信號映射到相應域上的一個點后,將其轉化為該論域上的一個模糊子集,即把輸入的精確量轉化為模糊量。
(2)知識庫。知識庫包含了具體應用領域中的知識和要求的目標,通常由數(shù)據(jù)庫和模糊規(guī)則庫兩部分組成。數(shù)據(jù)庫主要包含各語言變量的隸屬函數(shù),尺度變換因子和模糊空間的分級數(shù)等;規(guī)則庫包含了用模糊語言變量表示的一系列控制規(guī)則,他們反映了控制專家的知識和經(jīng)驗。
(3)模糊推理。模糊推理是模糊控制的核心,它具有模擬人的模糊推理的能力。該推理過程是基于模糊邏輯中的蘊含關系及推理規(guī)則來進行的。
(4)清晰化。清晰化又稱為解模糊化,作用是將模糊推理得到的控制量(模糊量)變換為實際的可用于被控對象的精確量。它包括兩部分的內(nèi)容:一是將模糊的控制量經(jīng)解模糊化變換變成表示在論域范圍的精確量;二是將表示在論域范圍的精確量轉換成實際的控制量。
2. 模糊控制系統(tǒng)通常由計算機實現(xiàn)(包括PC機、單片機、單板機以及DSP等)
3.模糊語言變量確定隸屬函數(shù),即對模糊變量進行賦值。
4.計算機經(jīng)過采樣和A/D轉換獲得被控量的精確值,然后將此量與給定值比較得到誤差信號e和ec。把e和ec模糊量化,得到e和ec的模糊子集(實際是模糊向量e和ec)。
5.根據(jù)模糊向量e、ec和模糊控制規(guī)則R,按推理合成規(guī)則進行模糊決策,得到控制量(模糊向量u)。
基于單片機的溫控系統(tǒng)
1系統(tǒng)原理
本系統(tǒng)有溫度傳感器DS18B20 , ATmega8單片機、執(zhí)行機構,外圍電路包括鍵盤,LED顯示以及保護電路構成的閉環(huán)控制回路,控制對象為水溫。系統(tǒng)的原理框圖如圖1所示。
2 硬件設計
1、ATmega8是采用低功耗CMOS工藝生產(chǎn)的基于AVR RISC結構的8位單片機。工作電壓4. 5-5.5 V,芯片內(nèi)部集成A/D轉換功能。通過編寫程序,可將芯片的PC0至PC6口從普通的I/O口功能用作8位或10位A/D轉換,從而省去外圍的A/D轉換 電路。ATmega8內(nèi)部有3個定時器T0,T1和T2,本系統(tǒng)使用2個,分別用作Ss的溫度數(shù)據(jù)采集和5 NS的LED刷新顯示。
2、 DS18B20支持“一線總線”接口,從而提高了系統(tǒng)的抗干擾性。溫度測量范圍從-55℃~+ 125℃,在-10℃~+85℃時測量精度為0. 5℃。
3、鍵盤用作上位機對下位機的通信控制。顯示電路采用10位共陰極LED,通過3片Max595芯片與單片機相連,同時顯示當前溫度值和設定值。外圍電路同時有4個按鍵,可進行溫度逐次加減、功能切換以及保存等功能。
軟件設計
整個系統(tǒng)的硬件電路設計相對簡單。在本系統(tǒng)中采用增量型PID控制算法,即:
△u(k)=u(k)-u(k-1)=KP[e(k)一e(k-1)]+Ki(k)+Kd[e(k)一2e(k-1) +e(k-2)]
式中,△u(k)為控制增量;KP為比例參數(shù);Ki為積分參數(shù);Kd為微分參數(shù);e(k)為系統(tǒng)偏差。先根據(jù)KP、 Ki 、Kd的值,計算出輸出U的初值,再根據(jù)操作人員的給定值得到偏差e和偏差變化率ec,然后通過模糊規(guī)則表推導出KP'、 Ki' 、Kd'的值,再計算出△u。
模糊控制器的關鍵是總結操作人員和技術人員的實際操作經(jīng)驗和技術知識,并建立合適的模糊規(guī)則表,并將模糊規(guī)則表通過程序編寫人單片機ATmega8中的EEPROM中去,在線時通過查詢得到合適的PID參數(shù)。
控制器的控制范圍為整個測量系統(tǒng)的測量范圍,各個隸屬函數(shù)的論域范圍既要滿足覆蓋的原則,又不要使規(guī)則過多。
總結
本文首先介紹了模糊控制理論的基本原理,在此基礎上將模糊控制理論與常規(guī)PID控制相結合,在以單片機ATmega8為系統(tǒng)核心部件對溫度進行控制。相較單一的PID控制來說,模糊PID控制的效果具有動態(tài)效果好,上升時間快,超調小的優(yōu)越性,在本系統(tǒng)中也取得了很好的控制效果。另外可以發(fā)現(xiàn),傳統(tǒng)控制與模糊控制是可以協(xié)同工作、相互補充的。