電壓波動(dòng)和閃變的常用檢測(cè)方法
由沖擊性功率負(fù)荷引起的電壓波動(dòng)與閃變是電能質(zhì)量問題的重要方面之一。本文論述了電壓波動(dòng)和閃變的常用檢測(cè)方法,比較分析了幾種改善電壓波動(dòng)和閃變補(bǔ)償裝置的性能特點(diǎn),為電力系統(tǒng)電壓波動(dòng)與閃變的監(jiān)測(cè)及抑制提供參考。
關(guān)鍵詞:電壓波動(dòng);閃變;檢測(cè);抑制;電能質(zhì)量
Detection and Suppression Methods for Voltage Fluctuation and Flicker
GUO Shang-hua, HUANG Chun,WANG Lei,CAO Guo-jian
(College of Electricity & Information Engineering of Hunan University,
Changsha 410082,China)
Abstract:Voltage fluctuation and flicker, caused by fast-speed varying load, is one of the most important aspects of power quality. In this paper, the methods of detecting voltage flicker are detailed, and the performances of some common device that suppressed the voltage fluctuation are analyzed and compared. All the study is helpful for the supervision and control of voltage fluctuation and flicker.
Key words: voltage fluctuation; flicker; detection; suppression; power quality
0 引言
隨著大量的基于計(jì)算機(jī)系統(tǒng)的控制設(shè)備和自動(dòng)化程度很高的用電設(shè)備相繼投入使用,工業(yè)用戶對(duì)電能質(zhì)量的要求越來越高,甚至幾分之一秒的不正常就可造成的巨大的損失。據(jù)統(tǒng)計(jì),自動(dòng)化程度很高的工業(yè)用戶一般每年要遭受10~50次與電能質(zhì)量問題有關(guān)的干擾,其中因包括電壓波動(dòng)和閃變?cè)趦?nèi)的動(dòng)態(tài)電壓質(zhì)量問題造成的事故數(shù)約占事故總數(shù)的83%[1]。電壓波動(dòng)和閃變已成為威脅許多重要用戶供電可靠性的主要原因之一,必須對(duì)其進(jìn)行有效地監(jiān)視與抑制。
電力系統(tǒng)的電壓波動(dòng)和閃變主要是由具有沖擊性功率的負(fù)荷引起的[2],如變頻調(diào)速裝置、煉鋼電弧爐、電氣化鐵路和軋鋼機(jī)等。這些非線性、不平衡沖擊性負(fù)荷在生產(chǎn)過程中有功和無功功率隨機(jī)地或周期性地大幅度變動(dòng),當(dāng)其波動(dòng)電流流過供電線路阻抗時(shí)產(chǎn)生變動(dòng)的壓降,導(dǎo)致同一電網(wǎng)上其它用戶電壓以相同的頻率波動(dòng)。這種電壓幅值在一定范圍內(nèi)(通常為額定值的90%~110%)有規(guī)律或隨即地變化,即稱為電壓波動(dòng)。電壓波動(dòng)通常會(huì)引起許多電工設(shè)備不能正常工作,如影響電視畫面質(zhì)量、使電動(dòng)機(jī)轉(zhuǎn)速脈動(dòng)、使電子儀器工作失常、使白熾燈光發(fā)生閃爍等等。由于一般用電設(shè)備對(duì)電壓波動(dòng)的敏感度遠(yuǎn)低于白熾燈,為此,選擇人對(duì)白熾燈照度波動(dòng)的主觀視感,即“閃變”,作為衡量電壓波動(dòng)危害程度的評(píng)價(jià)指標(biāo)。
1 電壓波動(dòng)與閃變的檢測(cè)
1.1 調(diào)幅波檢測(cè)
要對(duì)電壓波動(dòng)與閃變進(jìn)行有效的抑制,首先的任務(wù)就是要準(zhǔn)確的提取出波動(dòng)信號(hào),通常將波動(dòng)電壓看成以工頻額定電壓為載波、其電壓的幅值受頻率范圍在0.05~35Hz的電壓波動(dòng)分量調(diào)制的調(diào)幅波。因此,電壓波動(dòng)分量的檢出方法可采用通信理論中大功率載波調(diào)制信號(hào)解調(diào)方法,用與載波信號(hào)同頻同相的周期信號(hào)乘以被調(diào)信號(hào),將電壓波動(dòng)分量與工頻載波電壓分離,通過帶通濾波器得到波動(dòng)分量。
考慮電壓波動(dòng)分量,就是在基波電壓上疊加有一系列的調(diào)幅波,為使分析簡(jiǎn)化又不失一般性,研究電壓波動(dòng)的檢測(cè)方法可分析某單一頻率的調(diào)幅波對(duì)工頻載波的調(diào)制,將工頻電壓u(t)的瞬時(shí)值解析式寫成:
式中:A為工頻載波電壓的幅值,ω0為工頻載波電壓的角頻率,m為調(diào)幅波電壓的幅值,mcos(Ωt)為波動(dòng)電壓。
目前,常用的波動(dòng)電壓檢出方法有三種:平方解調(diào)檢波法、全波整流檢波法和半波有效值檢波法,圖1所示分別為三種方法的原理結(jié)構(gòu)框圖。
(1)平方解調(diào)檢波法
國際電工委員會(huì)(IEC)推薦平方解調(diào)檢測(cè)法,即將u(t)平方,然后利用解調(diào)帶通濾波器檢測(cè)出調(diào)幅波。經(jīng)過0.05~30HZ的帶通濾波器便能濾去直流分量和二倍工頻分量,從而檢測(cè)出mA2cos(Ωt)的調(diào)幅波即電壓波動(dòng)分量。這種方法較適合用數(shù)字信號(hào)處理的方法來實(shí)現(xiàn)。
(2)全波整流解調(diào)檢波法
全波整流檢波法的基本原理是將輸入交流電壓u(t)全波整流即進(jìn)行絕對(duì)值運(yùn)算后再經(jīng)過解調(diào)帶通濾波器后便取得波動(dòng)信號(hào)。設(shè)u(t)經(jīng)整流后的電壓為g(t),則g(t)可看作u(t)和幅值為±1、頻率為工頻的方波的乘積。將經(jīng)過0.05~30HZ的帶通濾波器便可檢測(cè)出的調(diào)幅波即電壓波動(dòng)分量。
這種方法較適合于模擬電路加以實(shí)現(xiàn),英國ERA和法國EDF等閃變儀采用此方案。它跟平方檢波法一樣,都要通過帶通濾波器保留調(diào)幅波,但存在檢出誤差,誤差的大小取決于波動(dòng)信號(hào)的頻譜結(jié)構(gòu)。
(3)半波有效值檢波法
半波有效值法是利用RMS/DC變換器將波動(dòng)的輸入交流電壓變換成脈動(dòng)的直流電壓,再經(jīng)解調(diào)帶通濾波器后獲得波動(dòng)信號(hào)。RMS/DC變換器輸出的直流電壓值為輸入交流電壓的方均根值,其脈動(dòng)成份即反映了輸入電壓方均根值的變化。根據(jù)半波
這種方法,就實(shí)際線路而言,要將方均根值的計(jì)算時(shí)間準(zhǔn)確地整定在半個(gè)工頻周期是相當(dāng)困難的,而且其元件參數(shù)整定較為困難。另外,該方法可去除直流分量和二倍工頻分量等,只保留調(diào)幅波,但其中不會(huì)完全沒有直流分量,仍需隔直和濾波。瑞士的MEFP型閃變儀,國產(chǎn)的VFF-1型電壓波動(dòng)閃變分析儀和日本的△V10測(cè)量?jī)x等均采用每個(gè)周波求一個(gè)有效值。
(4)小波多分辨率信號(hào)分解同步檢波法及其它方法
近年來一些新理論和新原理應(yīng)用于調(diào)幅波檢測(cè)。如,文獻(xiàn)[3]提出了一種采用小波多分辨率信號(hào)分解和同步檢波的電壓閃變信號(hào)檢測(cè)新方法,該方法用小波多分辨率信號(hào)分解濾波器取代同步檢波器中的解調(diào)帶通濾波器,可以檢測(cè)出電壓閃變信號(hào)的突變時(shí)間,包絡(luò)信號(hào)中的各個(gè)頻率分量及其幅度。但這種方法具有對(duì)信號(hào)所需采樣數(shù)據(jù)多,運(yùn)算量大,檢測(cè)突變故障信號(hào)的故障時(shí)刻延時(shí)較大等特點(diǎn),因而在采用小波多分辨率信號(hào)分解時(shí),必須尋求快速小波函數(shù)及其相應(yīng)小波變換。
另外,文獻(xiàn)[4]提出了一種基于隨機(jī)理論和導(dǎo)納矩陣的隨機(jī)電壓閃變功率潮流法,這種方法可以計(jì)算出每條母線的最大電壓波動(dòng)值和閃變值,也能檢測(cè)出閃變?cè)磳?duì)系統(tǒng)電壓的沖擊,但這種方法在實(shí)際應(yīng)用中存在很大的難度。[!--empirenews.page--]
1.2 閃變值的獲得
閃變是由于電網(wǎng)電壓的波動(dòng),所引起的燈光閃爍對(duì)人眼視覺產(chǎn)生刺激的響應(yīng)。它不僅和電壓波動(dòng)大小有關(guān),而且和波動(dòng)的頻率(即對(duì)工頻電壓的調(diào)幅頻率)、照明燈具的性能及人的視感因素有關(guān)。因此,要獲得閃變值,就必須在取得電壓波動(dòng)信號(hào)mcos(Ωt)的基礎(chǔ)上,根據(jù)人眼視感度曲線進(jìn)行相應(yīng)的處理。國際電工委員會(huì)(IEC)依據(jù)1982年國際電熱協(xié)會(huì)(UIE)的推薦,給出了檢測(cè)電壓閃變的設(shè)計(jì)規(guī)范,其框圖如圖2所示。
框1為輸入級(jí),實(shí)現(xiàn)把不同等級(jí)的電源電壓降到適合于儀器內(nèi)部電路的電壓值,此外也能產(chǎn)生標(biāo)準(zhǔn)的調(diào)制波用于儀器的自檢???、3、4綜合模擬了燈-眼-腦環(huán)節(jié)對(duì)電壓波動(dòng)的反應(yīng)。其中框2反應(yīng)燈光強(qiáng)度與電壓的關(guān)系,給出與調(diào)制波幅值成線形關(guān)系的電壓,具體參考前面調(diào)幅波的檢測(cè);框3的帶通和視感度加權(quán)濾波器反應(yīng)了人眼對(duì)不同頻率的電壓波動(dòng)的敏感程度,通頻帶為0.05~35Hz;框4包含一個(gè)平方器和一個(gè)一階低通濾波器,用來模擬人腦對(duì)光強(qiáng)變化的非線性響應(yīng)和存儲(chǔ)響應(yīng),框4的輸出S(t)反應(yīng)了人的視覺對(duì)電壓波動(dòng)的瞬時(shí)閃變視感度。然后對(duì)S(t)作不同處理可以反映電網(wǎng)電壓的閃變情況[5,6]???為閃變的統(tǒng)計(jì)分析,即根據(jù)框4輸出的S(t)進(jìn)行在線統(tǒng)計(jì)分析或?qū)⑵漭敵鰹V波做離線統(tǒng)計(jì)分析求得并輸出短時(shí)閃變嚴(yán)重度Pst。
根據(jù)此原理和框圖,可以設(shè)計(jì)出模擬式閃變檢測(cè)儀和數(shù)字式閃變檢測(cè)儀。模擬式閃變儀由于采用芯片實(shí)現(xiàn)濾波電路,具有處理速度快等特點(diǎn),但對(duì)硬件電路要求較高,設(shè)計(jì)復(fù)雜;數(shù)字式檢測(cè)儀濾波運(yùn)算采用軟件實(shí)現(xiàn),計(jì)算量大,但結(jié)構(gòu)簡(jiǎn)單,比較靈活。
2 電壓波動(dòng)與閃變的抑制
目前,大部分用于改善和提高電能質(zhì)量的補(bǔ)償裝置,它們也都具有抑制電壓波動(dòng)與閃變的功能[6-9],如靜止無功補(bǔ)償器(SVC),有源濾波器(APF),動(dòng)態(tài)電壓恢復(fù)器(DVR),以及配電系統(tǒng)電能質(zhì)量統(tǒng)一控制器等。下面分析比較這些裝置在抑制電壓波動(dòng)與閃變方面的作用。
2.1 靜止無功補(bǔ)償器(SVC)
電壓閃變是電壓波動(dòng)的一種特殊反映,閃變的嚴(yán)重程度必將與負(fù)荷變化引起的電壓變動(dòng)相關(guān),電壓變動(dòng)量通常按下式計(jì)算:
式(1)中,ΔP、ΔQ分別為評(píng)價(jià)母線上電力負(fù)荷有功、無功變化量;R、X為從電源到評(píng)價(jià)母線段供電系統(tǒng)等值電阻和電抗;UN為評(píng)價(jià)母線額定電壓。 在10KV以上系統(tǒng)中,由于R遠(yuǎn)小于X,故有
式(2)中,SK為評(píng)價(jià)母線上的三相系統(tǒng)短路容量。
式(2)表明,在高電壓或中壓配電網(wǎng)中,電壓波動(dòng)主要與無功負(fù)荷的變化量以及電網(wǎng)的短路容量有關(guān)。在電網(wǎng)短路容量一定的情況下,電壓閃變主要是由于無功負(fù)荷的劇烈變動(dòng)所致,因此對(duì)于電壓閃變的抑制,最常用方法是安裝靜止無功補(bǔ)償裝置(SVC),目前這方面技術(shù)已相當(dāng)成熟。但是,由于某些類型的SVC本身還產(chǎn)生低次諧波電流,須與無源濾波器并聯(lián)使用,實(shí)際運(yùn)行時(shí)有可能由于系統(tǒng)諧波諧振使某些諧波嚴(yán)重放大。因此,在進(jìn)行補(bǔ)償時(shí),要求采用具有短的響應(yīng)時(shí)間、并且能夠直接補(bǔ)償負(fù)荷的無功沖擊電流和諧波電流的補(bǔ)償器。
2.2 有源電力濾波器(APF)
對(duì)于非線性沖擊性負(fù)荷,在幾個(gè)周波的時(shí)間內(nèi),其電流可能出現(xiàn)相當(dāng)大的波動(dòng),引起電壓閃變。因此,要抑制電壓閃變,必須在負(fù)荷電流急劇波動(dòng)的情況下,跟隨負(fù)荷變化實(shí)時(shí)補(bǔ)償無功電流。近年來采用電力晶體管(GTR)和可關(guān)斷晶閘管(GTO)及脈寬調(diào)制(PWM)技術(shù)等構(gòu)成的有源濾波器,可對(duì)負(fù)荷電流作實(shí)時(shí)補(bǔ)償,如圖3所示。有源電力濾波器的工作原理與傳統(tǒng)的SVC完全不同,它采用可關(guān)斷的電力電子器件和基于坐標(biāo)變換原理的瞬時(shí)無功理論進(jìn)行控制,其作用原理是利用電力電子控制器代替系統(tǒng)電源向負(fù)荷提供所需的畸變電流,從而保證系統(tǒng)只須向負(fù)荷提供正弦的基波電流。
有源電力濾波器與普通SVC相比[10],有以下優(yōu)點(diǎn):響應(yīng)時(shí)間快,對(duì)電壓波動(dòng)、閃變補(bǔ)償率高,可減少補(bǔ)償容量;沒有諧波放大作用和諧振問題,運(yùn)行穩(wěn)定;控制強(qiáng),能實(shí)現(xiàn)控制電壓波動(dòng)、閃變,穩(wěn)定電壓作用,同時(shí)也能有效地濾除高次諧波,補(bǔ)償功率因數(shù)。
我國雖然在理論上取得了一定的進(jìn)展,但由于多方面條件的限制,至今未有并聯(lián)型有源電力濾波器正式用于實(shí)際。而在日本和美國,已普遍使用有源電力濾波器來抑制電弧爐等引起的電壓閃變。
2.3 動(dòng)態(tài)電壓恢復(fù)器
由式(1)知,在中低壓配電網(wǎng)中,由于R與X相差不大,有功功率的快速波動(dòng)同樣會(huì)導(dǎo)致電壓閃變,這就要求補(bǔ)償裝置在抑制電壓波動(dòng)與閃變時(shí)除了進(jìn)行無功功率補(bǔ)償使供電線路無功功率波動(dòng)減小外,還得提供瞬時(shí)有功功率補(bǔ)償。因而傳統(tǒng)的無功補(bǔ)償方法不能有效的改善這類電能質(zhì)量問題,只有帶儲(chǔ)能單元的補(bǔ)償裝置才能滿足要求。
動(dòng)態(tài)電壓恢復(fù)器(DVR)的基本結(jié)構(gòu)如圖4所示,其接法是將一個(gè)由三單相電壓源變流器構(gòu)成的三相變流器串聯(lián)接入電網(wǎng)與欲補(bǔ)償?shù)呢?fù)荷之間[11-13]。這里逆變器采用3個(gè)單相結(jié)構(gòu),目的是為了更靈活地對(duì)三相電壓和電流進(jìn)行控制,并提供對(duì)系統(tǒng)電壓不對(duì)稱情況的補(bǔ)償。該裝置的核心部分為同步電壓源逆變器,當(dāng)線路側(cè)電壓發(fā)生突變時(shí),DVR通過對(duì)直流側(cè)電源的逆變產(chǎn)生交流電壓,再通過變壓器與原電網(wǎng)電壓相串聯(lián),來補(bǔ)償系統(tǒng)電壓的跌落或抵消系統(tǒng)電壓的浪涌。由于DVR通過自身的儲(chǔ)能單元,能夠在ms級(jí)內(nèi)向系統(tǒng)注入正常電壓與故障電壓之差[2],可用于克服系統(tǒng)電壓波動(dòng)對(duì)用戶的影響,因此是解決電壓波動(dòng)、不對(duì)稱、諧波等動(dòng)態(tài)電壓質(zhì)量問題的有效工具。至今西屋公司、西門子公司和ABB公司都已研制出該類裝置,并已取得良好的運(yùn)行效果[10]。
[!--empirenews.page--]
由DVR裝置的結(jié)構(gòu)圖可以看出,它起了將系統(tǒng)與負(fù)荷隔離的作用,是面向負(fù)荷的補(bǔ)償裝置。該裝置僅對(duì)特定負(fù)荷加以補(bǔ)償,所以其容量?jī)H取決于負(fù)荷的補(bǔ)償容量和要求的補(bǔ)償范圍。目前大部分DVR裝置的直流側(cè)采用電容來提供直流電壓,只能提供有限的能量,若要求DVR長時(shí)間提供電壓補(bǔ)償,則必須讓DVR輸出的電壓和電流垂直,這樣DVR裝置不提供有功,只進(jìn)行無功交換,可以滿足長期工作的要求。
2.4 統(tǒng)一電能質(zhì)量控制器及其它補(bǔ)償裝置
統(tǒng)一電能質(zhì)量控制器(UPFC)結(jié)合了串、并聯(lián)補(bǔ)償裝置的特點(diǎn),具有對(duì)電壓、電流質(zhì)量問題統(tǒng)一補(bǔ)償?shù)墓δ?,屬于綜合的補(bǔ)償裝置。如文獻(xiàn)[14]提出的含有儲(chǔ)能單元的串、并聯(lián)組合的用戶電力綜合補(bǔ)償裝置,該裝置除了應(yīng)用于配電系統(tǒng)的諧波補(bǔ)償外,還可以解決瞬時(shí)供電中斷和電壓波動(dòng)等動(dòng)態(tài)電壓質(zhì)量問題,提高供電的可靠性。
另外,除了前面的所介紹的補(bǔ)償裝置外,靈活交流輸電系統(tǒng)(FACTS)也能抑制電壓波動(dòng)和閃變。該系統(tǒng)通過控制電力系統(tǒng)的基本參數(shù)來靈活控制系統(tǒng)潮流,使輸送容量更接近線路的熱穩(wěn)極限,能提高輸電系統(tǒng)輸送容量。目前主要的FACTS有:靜止無功補(bǔ)償器(STATCOM),晶閘管投切電容器型(TSSC),可控串聯(lián)補(bǔ)償電容器(TCSC)等。根據(jù)前面的式(2)知,在10KV以上系統(tǒng)中,通過FACTS改變線路電抗能減小電壓波動(dòng),特別是并聯(lián)補(bǔ)償裝置----STATCOM,通過與系統(tǒng)進(jìn)行無功功率交換,以維持線路電壓恒定,因此是抑制系統(tǒng)電壓波動(dòng)、閃變和提高系統(tǒng)穩(wěn)定性特別是電壓穩(wěn)定性的有力工具。
3 結(jié)論
在輸電和配電系統(tǒng)中,由沖擊性功率負(fù)荷引起的電壓波動(dòng)通過公共連接點(diǎn)(PCC)傳遞到電網(wǎng)其它饋電線路上危害其他用戶的電氣設(shè)備,給配電系統(tǒng)的電能質(zhì)量造成了嚴(yán)重污染。因此,需加強(qiáng)對(duì)電壓波動(dòng)和閃變的監(jiān)測(cè)與控制。本文論述了電壓波動(dòng)和閃變的常用檢測(cè)方法,比較分析了幾種常用的改善電壓波動(dòng)和閃變的補(bǔ)償裝置性能特點(diǎn)。這些研究,對(duì)研制閃變檢測(cè)儀器或采取電壓波動(dòng)抑制措施,具有借鑒和參考價(jià)值。