當前位置:首頁 > 電源 > 數字電源
[導讀]摘要:本文利用SA7527芯片,設計了一款LED日光燈驅動電路,對電路各部分進行了分析。該電路的拓撲結構采用的是反激變換器,并采用可式精密并聯(lián)穩(wěn)壓器TL431配合雙運算放大器LM358和光耦EL817構成閉環(huán)反饋,實現(xiàn)了恒流

摘要:本文利用SA7527芯片,設計了一款LED日光燈驅動電路,對電路各部分進行了分析。該電路的拓撲結構采用的是反激變換器,并采用可式精密并聯(lián)穩(wěn)壓器TL431配合雙運算放大器LM358和光耦EL817構成閉環(huán)反饋,實現(xiàn)了恒流恒壓輸出。該電路具有簡單、輸入電壓范圍寬、成本低、性能良好、工作穩(wěn)定可靠等優(yōu)點。

隨著社會的發(fā)展,人們越來越提倡綠色照明,LED日光燈作為其中一種正在被廣泛使用,LED日光燈相對于普通的日光燈具備節(jié)能、壽命長、適用性好等特點,因單顆LED的體積小,可以做成任何形狀,擁有回應時間短、環(huán)保、無有害金屬、廢氣物容易回收、色彩絢麗、發(fā)光色彩純正等優(yōu)勢。本文通過SA7527設計的一款LED日光燈驅動電路,穩(wěn)定可靠性比較好,不僅能夠降低日光燈的成本,提高它的轉化效率,還可以實現(xiàn)恒流恒壓輸出,同時能驅動不同功率的LED。

一、電路的設計

1.電路組成

全電路由抗浪涌保護、EMI濾波、全橋整流、反激式變換器、PWMLED驅動控制器、閉環(huán)反饋電路組成,如圖1。


圖1基于SA7527的LED驅動電路框圖

2.主電路分析

主電路如圖2所示。從AC220V看去,交流市電入口接有熔絲F1和抗浪涌的壓敏電阻RV1,熔絲起到線路輸入電路過流保護的作用,壓敏電阻RV1用來抑制來自電網的瞬時高電壓保護輸入線路的安全,之后是EMI濾波器,L1,L2,C1是共模濾波器,L3,L4,C2是差模濾波器,DB107是全橋整流電路,C13是一個電容濾波器,經過整流后的電壓(電流)仍然是有脈沖的直流電。為了減少波動,通常要加濾波器,由R19,C8,D5組成的RCD緩沖電路是為了防止功率管Q1在關斷過程中承受大反壓,緩沖電路的二極管一般選擇快速恢復二極管。

輸出濾波器C10,C11,C12并聯(lián)是為了減少電壓紋波。

本電路的特點:(1)寬電壓輸入范圍;(2)恒流/恒壓特性;(3)由LM358組成的輸出反饋取樣與恒流/恒壓控制電路,成本低,控制精度高,調試簡單;(4)本電路可以驅動不同功率的LED。

3.啟動電路的設計

啟動電路如圖2所示。為了使電路正常啟動,應該在整流橋整流后的變壓器初級線圈與SA7527的供電電壓端8腳之間連接一個啟動電阻R20,并在8腳與地之間連接一個啟動電容C9。接通電源時,流過啟動電阻R20的電流對啟動電容C9充電。當C9的充電電壓達到啟動門限電壓(典型值為11.5V)后,SA7527導通,并驅動功率管Q1開始工作。整流后電壓的最大值和最小值分別用Uimax和Uimin來表示,ISTmax為最大啟動電流,Vth(st)max為啟動門限電壓最大值,啟動電阻R20由下列公式(1)和公式(2)來確定,該電阻應選擇功率電阻,最大消耗功率不能超過1W。


圖2主電路和啟動電路

啟動電容C9應由下式來確定:

式中,Idcc為動態(tài)工作電流;fac為交流電網頻率;HY(ST)為欠電壓鎖定滯后電壓。

4.控制電路的設計

4.1芯片介紹

SA7527是一個簡單而且高效的功率因子校正芯片。此電路適用于電子鎮(zhèn)流器和所需體積小、功耗低、外圍器件少的高密度電源。

4.2控制方法的分析

控制電路如圖3所示。該控制電路是峰值電流控制模式,當功率管Q1導通時,二極管D6,D7截止,變壓器T1的原邊電感電流線性上升,當電流上升到乘法器輸出電流基準時關斷功率管Q1;當功率管Q1關斷時,二極管D6,D7導通,電感電流從峰值開始線性下降,一旦電感電流降到零時,被零電流檢測電阻檢測到,功率管Q1再次導通,開始一個新的開關周期,如此反復。


圖3控制電路

4.3零電流檢測電阻的設計

零電流檢測端外圍電路如圖4所示。MOSFET功率管利用零電流檢測器導通,并且在峰值電感電流達到由乘法器輸出設定的門限電平時關斷。


圖4零電流檢測端外圍電路

一旦電感電流沿向下的斜坡降至零電平,SA7527的零電流檢測器通過連接于5腳的變壓器副繞組電壓極性的反轉進行檢測,SA7527的7腳產生輸出,驅動MOSFET功率管又開始導通。當電感電流沿向上的斜坡從零增加到峰值之后,MOSFET功率管則開始關斷。直到電感電流降至零之前,MOSFET功率管一直截止。由芯片介紹資料可知,零電流檢測端電流最大不能超過3mA,因此零電流檢測電阻R25由下式來確定。

式中,Vcc為芯片供電電壓。

4.4輸入電壓檢測電阻的設計

乘法器外圍電路如圖5所示。交流輸入經整流后得到一個半波正弦形狀的電壓波形,為了使輸入電流較好地跟蹤輸入電壓波形,我們要在交流輸入整流后進行電壓采樣,經電阻R21和R22分壓后,電壓約縮小100倍輸入到SA7527的3腳,在電阻R2并聯(lián)一個電容C15除整流后的電壓紋波。由芯片的內部結構可知,乘法器輸入端3腳電壓在3.8V以下可以保證較好的功率因數校正效果。


圖5乘法器外圍電路

因此應滿足3腳的最大輸入電壓不超過3.8V,即:

4.5電流感應電阻的設計

電流檢測外圍電路如圖6所示。


圖6電流檢測外圍電路

電路采用峰值電流檢測法,因此在MOSFET功率管的源極與地之間接上一個電流感應電阻R24,MOSFET功率管的源極端接在SA7527的電流感應端4腳CS端,一般的應用電路中會在電流感應電阻后接上一個RC濾波電路以濾去開關電流的尖峰,因為SA7527芯片內部已經有RC濾波電路,所以這里不必加外圍RC濾波電路,從而減少了SA7527的外部元件數量。電流感測比較器采用RS鎖存結構,可以保證在給定的周期之內在驅動輸出端僅有一個信號脈沖出現(xiàn)。當電流感應電阻兩端的感應電壓超過了乘法器的輸出端門限電壓時,電流感應比較器就會關斷MOSFET功率管并且復位PWM鎖存器。電感電流的峰值在正常情況下由乘法器的輸出Vmo來控制,但壓是當在輸入電壓太高或者輸出電壓誤差放大器檢測出現(xiàn)問題時,電流感應端的門限電值就會在內部被鉗位在1.8V。這是由于芯片內部的電流感應比較器的反相輸入端接有一個1.8V的穩(wěn)壓二極管,因此電流感應電阻的取值要滿足公式(6)和公式(7)兩個條件。

其中

K為乘法器增益,ΔVm2=Vm2-Vref,為電壓誤差放大器的輸出與芯片內部參考電壓的差值。

4.6閉環(huán)反饋電路的設計

閉環(huán)反饋電路如圖7所示。該電路是一個恒流恒壓輸出電路,它是由雙運放LM358和TL431構成的電流控制環(huán)和電壓控制環(huán),先恒流后恒壓,先是電流采樣,D2導通,D1截止,實現(xiàn)恒流,然后是電壓采樣,D1導通,D2截止,實現(xiàn)恒壓。


圖7閉環(huán)反饋電路

電流控制環(huán):TL431是精密電壓調整器,陰極K與控制極R直接短路構成精密的2.5V基準電壓。該電壓由R11送到LM358的5腳(同相輸入端),R5直接從輸出端采樣電流,將電流轉換成電壓,再將電壓值送到LM358的6腳(反相輸入端),將同相輸入端的電壓和反相輸入端的電壓進行比較,并在7腳輸出高低電平來控制流過光耦EL817的導通與關斷,進而通過SA7527控制變壓器一次側輸出占空比的大小,達到穩(wěn)定輸出電流的結果,C1,R3為反相輸入端與輸出端的反饋元件,可通過調整其數值來調整放大器的反饋增益。當電路接P5端口時,輸出電流的大小為:

,

,其他端口同例。

電壓控制環(huán):TL431是精密電壓調整器,陰極K與控制極R直接短路構成精密的2.5V基準電壓。該電壓由R10送到LM358的3腳(同相輸入端),R7直接從輸出端采樣電壓,R7,R9組成分壓電路,將分壓值送到LM358的2腳(反相輸入端),將同相輸入端的電壓和反相輸入端的電壓進行比較,并在1腳輸出高低電平來控制流過光耦EL817的導通與關斷,進而通過SA7527控制變壓器一次側輸出占空比的大小,達到穩(wěn)定輸出電壓的結果,C3,R8為反相輸入端與輸出端的反饋元件,可通過調整其數值來調整放大器的反饋增益。當電路接P1端口時,P1端口的輸出電壓為:

,其他端口同例。

二、電壓控制環(huán)和電流控制環(huán)的建模與仿真

1.電壓控制環(huán)的建模與仿真

首先一個重要的中間量是TL431陰極電壓變化量kΔv與輸出波動oΔv的關系式為:

其中

陰極的電壓變化引起光耦二極管電流變化:

高壓感應側光電流變化:

其中

反饋網絡:

組成控制框圖如圖8所示。


圖8電壓環(huán)結構

系統(tǒng)的開環(huán)傳遞函數:

將R2=4.7KΩ,R7=150kΩ,R8=2.2kΩ,R9=4.7kΩ,R19=1kΩ,C3=1mF,CTR=100%,101pwmk=L?f=代入式16中,用MATLAB仿真得到電壓控制環(huán)的波特圖如圖9所示。交越頻率4.8KHZ,相位裕量100o。


圖9電壓環(huán)的波特圖

2.電流環(huán)控制環(huán)的建模和仿真

系統(tǒng)的開環(huán)傳遞函數:

將R2=4.7kΩ,R3=2.2kΩ,R4=2.2kΩ,R5=0.36Ω,R19=1kΩ,C1=1mF,CTR=100%,101pwmk=L?f=代入式19中,用MATLAB仿真得到電壓控制環(huán)的波特圖如圖10所示。交越頻率220kHz,相位裕量46°。


圖10電流環(huán)結構

三、實驗結果分析

搭建一個18W的實驗電路接入電源,用各種儀器測試的波形圖如圖11、圖12、圖13和圖14所示。從上面波形圖可以看出,輸出電流電壓能夠恒流恒壓輸出,電路效率達到85%以上,功率因素(PF)達到90%左右。


圖11電流環(huán)的波特圖


圖12電流電壓輸出波形


圖13輸入電壓和效率曲線


圖14輸入電壓和功率因數曲線

結論

LED日光燈是一種綠色光源,有著非常廣泛的應用前景。通過仿真和實驗驗證,本電路能寬電壓輸入,恒流恒壓輸出,電流控制環(huán)和電壓控制環(huán)不僅響應速度快而且穩(wěn)定,輸出電流電壓都很穩(wěn)定,電路的效率達到85%以上,達到了滿意的效果,該電路還有多個端口,能夠驅動不同功率的LED,能夠在實際生活中應用。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或將催生出更大的獨角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數字化轉型技術解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關鍵字: AWS AN BSP 數字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術公司SODA.Auto推出其旗艦產品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關鍵字: 汽車 人工智能 智能驅動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據媒體報道,騰訊和網易近期正在縮減他們對日本游戲市場的投資。

關鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數據產業(yè)博覽會開幕式在貴陽舉行,華為董事、質量流程IT總裁陶景文發(fā)表了演講。

關鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數據產業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數字世界的話語權最終是由生態(tài)的繁榮決定的。

關鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經營業(yè)績穩(wěn)中有升 落實提質增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質量發(fā)展策略,塑強核心競爭優(yōu)勢...

關鍵字: 通信 BSP 電信運營商 數字經濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術學會聯(lián)合牽頭組建的NVI技術創(chuàng)新聯(lián)盟在BIRTV2024超高清全產業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術創(chuàng)新聯(lián)...

關鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關鍵字: BSP 信息技術
關閉
關閉