• 了解什么是阻抗的基本原理和計算方法

    這個公式被稱為歐姆定律。如果電壓保持恒定,電阻值將隨著電流-分母的增加而減小。反過來,電阻值會隨著電流的減少而增加.換句話說,在攜帶大電流的電路中電阻較低,在攜帶小電流的電路中電阻較高。

  • 何時校準(zhǔn)系統(tǒng)偏置電壓和增益誤差

    圖1 用一個45MV輸入信號和一個1MV的增益表示100V/V的操作放大器 O .偏移信號直接增加輸入信號,引入2.22%的誤差.您可以通過選擇具有更好的偏移規(guī)格的操作放大器,或者通過實(shí)現(xiàn)校準(zhǔn)過程來減少這個錯誤。

  • 何時使用聲壓檢測,何時使用聲強(qiáng)測量

    聲壓、聲強(qiáng)和聲強(qiáng)是三種不同的聲音量化方法。該常見問題調(diào)查表首先定義每一種測量方法,研究可用于量化這些方法的各種測量技術(shù),提出一系列測量聲音的國際測試標(biāo)準(zhǔn),審視測量聲壓和聲強(qiáng)的儀器,最后簡要介紹人類聽覺的非線性特征。

  • 高性能智能手機(jī)電路板制造和裝配的重要性

    現(xiàn)代智能手機(jī)是驚人的工程功績,將許多先進(jìn)的部件包裝成細(xì)長的小型設(shè)計。這些設(shè)備的核心是印刷電路板,它連接和支持所有電子元件。高性能印刷電路板的制造和裝配是至關(guān)重要的,因?yàn)樗鼈冎苯佑绊懼悄苁謾C(jī)的工作質(zhì)量、可靠性和整體性能。本文討論了為什么高質(zhì)量的PCB板制造和組裝在智能手機(jī)行業(yè)如此重要,重點(diǎn)是推動這一重要過程的關(guān)鍵因素和新進(jìn)展。

  • 高速AD轉(zhuǎn)換器的生存指南,第四部分

    類似的原理也可以應(yīng)用于任何使用差動信號的高速接口技術(shù)。事實(shí)上,隨著數(shù)據(jù)傳輸速度的加快,需要增加對這些項(xiàng)目的關(guān)注。隨著數(shù)據(jù)速率進(jìn)入Gbps范圍,過程和板幾何形狀變得更小,在短得多的傳輸距離時,串?dāng)_等不必要的影響會成為一個問題。

  • 高速AD轉(zhuǎn)換器的生存指南,第三部分

    在模擬數(shù)字轉(zhuǎn)換器(ADC)空間,目前主要有三種類型的數(shù)字輸出使用的ADC制造商。如本文之前部分所述,這三種輸出是互補(bǔ)金屬氧化物半導(dǎo)體(CMOS)、低壓差動信令(LVDS)和電流模式邏輯(CML)。

  • 高速AD轉(zhuǎn)換器的生存指南,第二部分

    目前,已經(jīng)有兩個標(biāo)準(zhǔn)已經(jīng)編寫來定義LVDS接口。最常用的ANSI/TIA/EIA-644規(guī)范,題為"低壓差動信令(LVDS)接口電路的電氣特性。另一種是題為"用于可伸縮相干接口的低壓差動信號(LVDS)標(biāo)準(zhǔn)"的IEEE標(biāo)準(zhǔn)159.3。"

  • 高速AD轉(zhuǎn)換器的生存指南,第一部分

    由于設(shè)計者可以選擇許多類似數(shù)字轉(zhuǎn)換器,在選擇過程中需要考慮的一個重要參數(shù)是包括的數(shù)字?jǐn)?shù)據(jù)輸出類型。目前,高速轉(zhuǎn)換器使用的三種最常見的數(shù)字輸出類型是互補(bǔ)金屬氧化物半導(dǎo)體(CMOS)、低壓微分信號(LVDS)和電流模式邏輯(CML)。

  • PCB設(shè)計指南,如何提高信號完整性

    制定了PCB設(shè)計指南,作為電路設(shè)計工程師達(dá)到行業(yè)標(biāo)準(zhǔn)的基準(zhǔn)。遵循這些準(zhǔn)則將確保更好的可制造性和穩(wěn)健的產(chǎn)品性能。改進(jìn)產(chǎn)品可測試性和可制造性的設(shè)計準(zhǔn)則。他們的特色建議,以提高信號完整性和電磁兼容性(EMC)的印刷電路板,從而提高一個產(chǎn)品的整體性能。本文將概述各種PCB設(shè)計指南,以提高PCB的信號完整性。遵循這些指導(dǎo)方針將有助于工程師?PCB制造 .

  • RISC-V指令集優(yōu)點(diǎn)和缺點(diǎn)解析

    RISC-V指令集作為一種開源的指令集架構(gòu)(ISA),自推出以來便受到了廣泛的關(guān)注和應(yīng)用。其優(yōu)點(diǎn)和缺點(diǎn)具體如下:

  • 一種低開銷高性能的RISC-V處理器設(shè)計

    RISC-V,這一源自伯克利大學(xué)的指令集架構(gòu)(ISA),自2010年萌芽,至2014年正式面世,以其簡潔性、一致性、可擴(kuò)展性和高編譯效率,迅速吸引了全球范圍內(nèi)的企業(yè)、高校及研究機(jī)構(gòu)的目光。在ARM與Intel x86兩大巨頭長期主導(dǎo)的微處理器指令集架構(gòu)市場中,RISC-V如同一股清流,為處理器IP的“自主可控”提供了前所未有的發(fā)展機(jī)遇,特別是在消費(fèi)類電子、物聯(lián)網(wǎng)(IoT)等嵌入式應(yīng)用領(lǐng)域,RISC-V更是被視為打破壟斷、引領(lǐng)創(chuàng)新的“曙光”。

  • UWB室內(nèi)無線同步的定位基站系統(tǒng)設(shè)計

    隨著智能設(shè)備、物聯(lián)網(wǎng)和智能家居技術(shù)的飛速發(fā)展,室內(nèi)定位技術(shù)已經(jīng)成為研究和應(yīng)用的熱門領(lǐng)域。其中,基于超寬帶(Ultra-Wide Band,UWB)技術(shù)的室內(nèi)定位系統(tǒng)因其高精度、低功耗和強(qiáng)抗干擾能力而備受關(guān)注。本文將探討UWB室內(nèi)無線同步的定位基站系統(tǒng)的設(shè)計原理、關(guān)鍵技術(shù)和應(yīng)用場景。

  • PCB焊盤脫落:常見原因分析與應(yīng)對策略

    在電子制造業(yè)中,PCB(印刷電路板)作為電子設(shè)備的核心組件,其質(zhì)量和可靠性至關(guān)重要。然而,PCB焊盤脫落作為一種常見的質(zhì)量問題,不僅影響產(chǎn)品的功能性和使用壽命,還可能給生產(chǎn)帶來不必要的成本增加和延誤。本文將對PCB焊盤脫落的常見原因進(jìn)行深入分析,并提出相應(yīng)的應(yīng)對策略,以期為相關(guān)從業(yè)者提供有價值的參考。

  • PCB背鉆:原理、工藝及應(yīng)用解析

    在現(xiàn)代電子制造領(lǐng)域,PCB(印刷電路板)作為電子設(shè)備的基礎(chǔ)支撐,其設(shè)計與制造技術(shù)的優(yōu)劣直接關(guān)系到產(chǎn)品的性能、可靠性和成本。隨著信號傳輸速率的不斷提升,PCB設(shè)計中的信號完整性問題日益凸顯,背鉆技術(shù)應(yīng)運(yùn)而生,成為解決高頻信號傳輸中信號完整性問題的有效手段。本文將深入探討PCB背鉆的原理、工藝及其在實(shí)際應(yīng)用中的重要性。

  • PCB焊接工藝的優(yōu)化策略

    焊接工藝是將金屬材料通過加熱或施加壓力等方式進(jìn)行連接的技術(shù)方法,在制造業(yè)中具有廣泛應(yīng)用。然而,傳統(tǒng)的焊接工藝存在一些問題,如焊接接頭強(qiáng)度低、焊接變形大、焊接效率低下等。因此,優(yōu)化焊接工藝成為了一個重要的課題。以下是對焊接工藝優(yōu)化策略的詳細(xì)介紹:

發(fā)布文章