ARM嵌入式系統(tǒng)中斷向量表的動(dòng)態(tài)配置
掃描二維碼
隨時(shí)隨地手機(jī)看文章
關(guān)鍵詞:動(dòng)態(tài)配置 嵌入式系統(tǒng) ARM 中斷向量表
一般32位ARM嵌入式系統(tǒng)的中斷向量表是程序編譯前設(shè)置好的。在編寫(xiě)32位ARM嵌入式系統(tǒng)的中斷服務(wù)程序、設(shè)置和修改ARM體系結(jié)構(gòu)的中斷向量表時(shí),常感到相當(dāng)麻煩,不得不修改匯編代碼,對(duì)不喜歡使用匯編代碼編程的程序員尤其如此。當(dāng)需要在程序運(yùn)行過(guò)程中動(dòng)態(tài)修改中斷向量的程序時(shí)會(huì)感到更為不便,不得不增加很多分支處理指令才能實(shí)現(xiàn)。為此本文提出一種簡(jiǎn)便高效的配置方法,實(shí)現(xiàn)了ROM固化程序在運(yùn)行時(shí)動(dòng)態(tài)配置ARM嵌入式系統(tǒng)中斷向量表的功能。
1 ARM中斷向量?jī)煞N設(shè)置方法
在32位ARM系統(tǒng)中,一般都是在中斷向量表中放置一條分支指令或PC寄存器加載指令,實(shí)現(xiàn)程序跳轉(zhuǎn)到中斷服務(wù)例程的功能。例如:
IRQEntry B HandleIRQ ;跳轉(zhuǎn)范圍較小
B HandleFIQ
或IRQEntry LDR PC,=HandleIRQ ;跳轉(zhuǎn)的范圍是任意32位地址空間
LDR PC,=HandleFIQ
LDR偽指令等效生成1條存儲(chǔ)讀取指令和1條32位常數(shù)定義指令。32位常數(shù)存儲(chǔ)在LDR指令附近的存儲(chǔ)單元中,相對(duì)偏移小于4KB。該32位數(shù)據(jù)就是要跳轉(zhuǎn)到的中斷服務(wù)程序入口地址。
之所以使用LDR偽指令,是因?yàn)锳RM的RISC指令為單字指令,不能裝載32位的立即數(shù)(常數(shù)),無(wú)法直接把一個(gè)32位常數(shù)數(shù)據(jù)或地址數(shù)據(jù)裝載到寄存器中。下面一般程序與上述偽指令功能等效,但中斷向量表描述得更為清晰。其中VectorTable為相對(duì)LDR指令的偏移量:
IRQEntry LDR PC,VectorTable+0
;與LDR PC,=HandleIRQ等效
LDR PC,VectorTable+4
;與LDR PC,=HandleFIQ等效
……
VectorTable DCD HandleTRQ
DCD HandleFIQ
……
HandleIRQ
……
HandleFIQ
一般ARM嵌入式系統(tǒng)的程序都是固化在從00000000H開(kāi)始的低端ROM空間中,中斷向量表VectorTable也是固化在ROM中,所以上述兩種方法都無(wú)法在程序運(yùn)行時(shí)動(dòng)態(tài)隨機(jī)修改中斷向量表。不論對(duì)于初學(xué)ARM處理器的程序員還是有經(jīng)驗(yàn)的程序員,設(shè)置中斷向量都相當(dāng)繁瑣,必須修改ARM的C程序的啟動(dòng)代碼。一段晦澀的匯編代碼很不方便,比較容易出錯(cuò)。
2 X86與ARM處理器中斷向量表比較
實(shí)模式X86程序員都熟悉,在X86體系結(jié)構(gòu)的PC系統(tǒng)中,不論是用匯編還是用C語(yǔ)言,都可以動(dòng)態(tài)隨機(jī)地設(shè)置、修改中斷向量表—只需要簡(jiǎn)單地把中斷程序例程的入口地址寫(xiě)入到中斷向量表數(shù)據(jù)區(qū),即可完成向量表的設(shè)置。
X86向量表設(shè)置方便的原因有兩個(gè)。其一是中斷向量表與程序代碼完全分離,中斷向量表設(shè)置在RAM數(shù)據(jù)空間,向量表存放的數(shù)據(jù)是純粹地址數(shù)據(jù);而在ARM向量表中存放的是與中斷服務(wù)例程入口有關(guān)的一條分支指令。另一個(gè)原因是,除BIOS外,大多數(shù)PC程序都是在運(yùn)行時(shí)加載到RAM中的,程序數(shù)據(jù)是不加區(qū)別的,所以可以很容易在程序運(yùn)行的過(guò)程中從數(shù)據(jù)生成程序,并可以很容易把CPU控制權(quán)轉(zhuǎn)到新生成的程序中。
表面上看,在ARM第二種中斷向量設(shè)置方法的向量表VectorTable中也是純地址數(shù)據(jù),不含指令代碼,似乎可以把VectorTable設(shè)置在RAM數(shù)據(jù)段中。然而一般ARM體系的ROM代碼段和RAM數(shù)據(jù)段間的偏移遠(yuǎn)大于2 12,故超出了LDR使用PC為基址的相對(duì)尋址范圍。
代碼中的VectorTable是一個(gè)與當(dāng)前PC間的一個(gè)偏移,LDR指令的相對(duì)地址是在編譯時(shí)計(jì)算的,要求VectorTable<2 12,所以VectorTable不能隨意安排在RAM空間中。VectorTable一般只能安排在中斷跳轉(zhuǎn)指令附近的代碼區(qū)內(nèi)中。
3 ARM結(jié)構(gòu)中中斷向量表的動(dòng)態(tài)配置方法
要在ARM結(jié)構(gòu)中實(shí)現(xiàn)與X86中一樣方便的在中斷向量的隨機(jī)存取功能,向量表的地址數(shù)據(jù)必須可以安排在任意32位地址的RAM空間中。為此,中斷處理必須增加一條指令,先跳轉(zhuǎn)到向量表,然后執(zhí)行向量表中動(dòng)態(tài)生成的跳轉(zhuǎn)指令,跳轉(zhuǎn)到中斷服務(wù)程序,參見(jiàn)下列初始化代碼:
;******向量表******
ENTRY
B ResetHandle ;原向量偏移 ,中斷號(hào)
B ReseHandle ;0x00 ,00
LDR PC,=NewVectorTable+0x08 ;0x04,未定義 ,01
LDR PC,=NeWVector Table+0x10 ;0x08,SWI,02
LDR PC,=NewVectorTable+0x18 ;0x0c,未定義 ,03
LDR PC,=NewVectorTable+0x20 ;0x10,未定義 ,04
LDR PC,=NewVectorTable+0x28;0x14,未定義 0,05
LDR PC,=NewVectorTable+0x30 ;0x18,IRQ ;06
LDR PC,=NewVectorTable+0x38 ;0x1c,FIQ ,07
……
;******代碼段******
ResetHandle
……
;***數(shù)據(jù)段,為NewVectorTable分配數(shù)據(jù)空間***
NewVectorTable # 128;大小根據(jù)需要定義,每向量2個(gè)字(8字節(jié));
程序運(yùn)行時(shí),中斷服務(wù)的初始化 程序必須設(shè)置好新的中斷向量表,即在NewVectorTable表中動(dòng)態(tài)生成下列指令:
NewVectorTable;表安排在RAM頂端0x0c1fff00處(由硬件設(shè)定)
LDR PC,[PC,#4];指令代碼為0xe51ff004,功能為PC〈-[PC+4]
nVt00 DCD ISR_RESET_HANDLE
LDR PC,[PC,#4];與LDR PC,nVt01指令等效
nVt01 DCD ISR_UNDEF_HANDLE
LDR PC,[PC,#4]
nVt02 DCD ISR_SWI_HANDLE
LDR pC,[PC,#4]
nVt03 DCD ISR_UNDEF_HANDLE
LDR PC,[PC,#4]
nVt04 DCD ISR_UNDEF_HANDLE
LDR PC,[PC,#4]
nVt05 DCD ISR_UNDEF_HANDLE
LDR PC,[PC,#4]
NVt06 DCD ISR_IRQ_HANDLE
LDR PC,[PC,#4]
nVt07 DCD ISR_FIQ_HANDLE
……
可用C函數(shù)在NweVectorTable中生成含上述指令的向量表,具體實(shí)現(xiàn)如下:
#define VECTOR_TABLE 0x0c1fff00
//向量表首地址,根據(jù)實(shí)際硬件來(lái)配置
#define INSTRUCTION_LDR_PC 0xe51ff004
//加載PC寄存器的指令碼
//設(shè)置向量C函數(shù),ISR_Handle中斷服務(wù)程序地址
void SetVector(unsigned char no,unsigned long int ISR_Handle){
unsigned long int * pVectorTable;
//定義32位無(wú)符號(hào)數(shù)指令,指向向量表
pVectorTable=((unsigned long int *)(VECTOR_TABLE+(no<<3)));
*pVectorTable++=INSTRUCTION_LDR_PC;
//在向量表中放置LDR PC,[PC,#4]指令
*pVectorTable=ISR_Handle;//設(shè)置中斷服務(wù)例程入口地址
}
//讀取向量C函數(shù),no代表中斷號(hào)
unsigned long int GetVector(unsigned char no){
unsigned long int *pVectorTable;
pVectorTable=((unsigned long int *)(VECTOR_TABLE+(no<<3)));
return *(++pVectorTable);//返回中斷處理程序入口地址
}
使用上述初始化代碼和向量設(shè)置函數(shù),除復(fù)位向量外,其它所有中斷向量都可以指向了在RAM數(shù)據(jù)區(qū)中的新向量表,并給定一個(gè)統(tǒng)一的中斷編號(hào)。中斷服務(wù)程序可以放在任何模塊文件中編譯連接,不需要修改原向量表代碼,但在打開(kāi)中斷使用中斷服務(wù)例程前必須使用C函數(shù)SetVector()設(shè)置中斷向量。
4 結(jié)論
本文提出的中斷向量表配置策略和實(shí)現(xiàn)方法,簡(jiǎn)便高效,僅比標(biāo)準(zhǔn)處理方法增加一條指令的執(zhí)行時(shí)間。當(dāng)把ARM的C初始化匯編代碼中所有中斷源(包括擴(kuò)展的內(nèi)外部中斷源)的向量都指向了新向量表,并統(tǒng)一編號(hào),此后編寫(xiě)任何中斷服務(wù)程序幾乎不需要修改匯編代碼,C初始化代碼完全可以對(duì)C程序員隱藏起來(lái),并可以像在X86體系下一樣動(dòng)態(tài)地設(shè)置和修改中斷向量。