當前位置:首頁 > 嵌入式 > 嵌入式教程
[導讀]隨著數(shù)字化設(shè)計和SoC的日益復雜,復位架構(gòu)也變得非常復雜。在實施如此復雜的架構(gòu)時,設(shè)計人員往往會犯一些低級錯誤,這些錯誤可能會導致亞穩(wěn)態(tài)、干擾或其他系統(tǒng)功能故障。本

隨著數(shù)字化設(shè)計和SoC的日益復雜,復位架構(gòu)也變得非常復雜。在實施如此復雜的架構(gòu)時,設(shè)計人員往往會犯一些低級錯誤,這些錯誤可能會導致亞穩(wěn)態(tài)、干擾或其他系統(tǒng)功能故障。本文討論了一些復位設(shè)計的基本的結(jié)構(gòu)性問題。在每個問題的最后,都提出了一些解決方案。

復位域交叉問題

1. 問題

在一個連續(xù)設(shè)計中,如果源寄存器的異步復位不同于目標寄存器的復位,并且在起點寄存器的復位斷言過程中目標寄存器的數(shù)據(jù)輸入發(fā)生異步變化,那么該路徑將被視為異步路徑,盡管源寄存器和目標寄存器都位于同一個時鐘域,在源寄存器的復位斷言過程中可能導致目標寄存器出現(xiàn)亞穩(wěn)態(tài)。這被稱為復位域交叉,其中啟動和捕捉觸發(fā)的復位是不同的。

在這種情況下,C寄存器和A寄存器的起點異步復位斷言是不同的。在C寄存器復位斷言過程中而A觸發(fā)器沒有復位,如果A寄存器的輸入端有一些有效數(shù)據(jù)交易,那么C寄存器的起點異步復位斷言引起的異步變更可能導致目標A寄存器發(fā)生時序違規(guī),從而可能產(chǎn)生亞穩(wěn)態(tài)。

 

 

圖1:復位域交叉問題

在上面的時序圖中,當有一些有效數(shù)據(jù)交易通過C1進行時,rst_c_b獲得斷言,導致C1發(fā)生異步改變,w.r.t clk從而使QC1進入亞穩(wěn)態(tài),這可能導致設(shè)計發(fā)生功能故障。

2. 解決方案

* 使用異步復位、不可復位觸發(fā)器或D1觸發(fā)器POR.

* 如果復位源rst_c_b是同步的,那么則認為來自C_CLR --> Q的用于從rst_c_b_reg -->C_CLR-->C_Q1-->C1-->A_D進行設(shè)置保持檢查的時序弧能夠避免設(shè)計亞穩(wěn)態(tài)。然而,通常在默認情況下 C_CLR-->Q時序弧在庫中不啟用,需要在定時分析過程中明確啟用。

* 在目的地(A)使用雙觸發(fā)器同步器,以避免設(shè)計中發(fā)生亞穩(wěn)態(tài)傳播。然而,設(shè)計人員應(yīng)確保安裝兩個觸發(fā)器引入的延遲不會影響預期功能。

由于組合環(huán)路導致復位源干擾

1. 問題

在SoC 中,全局系統(tǒng)復位在設(shè)備中組合了軟件或硬件生成的各種復位源。LVD復位、看門狗復位、調(diào)試復位、軟件復位、時鐘丟失復位是導致全局系統(tǒng)復位斷言的一些示例。 然而,如果由于任何復位源導致的全局復位斷言是完全異步的,且復位發(fā)生源邏輯被全局復位清零,那么設(shè)計中會產(chǎn)生組合環(huán)路,這會在該復位源產(chǎn)生干擾。組合路徑的傳播延遲會根據(jù)不同的流程、電壓或溫度以及干擾范圍而不同。如果設(shè)計中使用了組合信元用于復位斷言和去斷言,那么也會導致模擬中出現(xiàn)紊亂情況。這被視為設(shè)計人員的非常低級的錯誤。

 

 

圖2:復位源干擾(基本問題)

在上圖中,當復位源SW_Q斷言時,會導致rst_b斷言,這是全局復位?,F(xiàn)在,如果全局復位本身被用于清除 “SW_Q” 復位斷言,那么會在設(shè)計中在SW_Q輸出和全局復位時產(chǎn)生干擾。此外,在模擬中,這會導致紊亂情況,因為復位源斷言試圖通過該組合邏輯去斷言。

然而,如果復位源(SW_Q)在復位狀態(tài)機(觸發(fā)器的SET/CLR輸入)為全局復位斷言被異步使用,那么復位干擾可能能夠復位整個系統(tǒng)(通過斷言全局復位),因為全局系統(tǒng)復位去斷言不僅僅與復位源去斷言相關(guān)。當該復位源(有干擾)被同步使用或在觸發(fā)器D輸入使用的情況下可能依然有一個問題。干擾范圍可能無法在至少一個周期內(nèi)保持穩(wěn)定,因此這不會被目標觸發(fā)器捕獲。此外,該復位源不能被用作任何電路的時鐘(除了脈沖捕捉電路),因為它可能違反時鐘寬度。

 

 

圖3:復位源干擾(問題2)

在上圖中,復位源SW_Q將出現(xiàn)干擾。雖然如果復位源SW_Q的干擾在某個觸發(fā)器被捕捉作為復位事件狀態(tài)(在S)或用于其他目的,全局復位輸出(rst_b)都沒有干擾,但它將導致時序違反/亞穩(wěn)態(tài),或根本不可能被捕獲。

2. 解決方案

* 設(shè)計人員永遠都不應(yīng)犯下上述(圖2)低級錯誤。

* 如果復位實現(xiàn)如圖3所示,那么設(shè)計人員應(yīng)保證復位源(在該示例中為SW_Q)總是在觸發(fā)器的SET/CLR輸入使用,而不在D或CLK使用。

* 解決這個問題的最好的方法是在復位狀態(tài)機中使用之前注冊該復位源。 雖然它將導致時鐘依靠全局復位斷言,但是無論如何,如果沒有時鐘,該內(nèi)部復位(SW_Q)都不會斷言。請參見圖4.

 

 

圖4:解決方案1

此外,用戶也可以擴展SW_Q斷言,然后再在設(shè)計中使用它,復位斷言與時鐘無關(guān)。 請參見圖5.

 

 

圖5:解決方案2

復位路徑的組合邏輯

1. 問題(I)

如果組合邏輯輸入大約在同一時間發(fā)生變化,那么使用復位路徑中的組合邏輯可能產(chǎn)生干擾,這可能在設(shè)計中觸發(fā)虛假復位。下面是一個RTL代碼,它會在設(shè)計中意外復位。

assign module_a_rstb = !((slave_addr[7:0]==8‘h02 & write_enable & (wdata[7:0]==00))

always @(posedge clk or negedge module_rst_b)

if(!module_rst_b) data_q <= 1‘b0;

else data_q <= data_d;

在上面的示例中,slave_addr,write_enable和wdata改變它們的值 w.r.t system clock,使用靜態(tài)時序分析,設(shè)計人員可以保證在目標觸發(fā)器的設(shè)置時間窗口之前這些信號在一個時鐘周期內(nèi)的穩(wěn)定性。然而,在該示例中,這些信號直接用作觸發(fā)器的異步清零輸入。[!--empirenews.page--]

因此,即使在特定的時間slave_addr[7:0]在邏輯上將其值從“00000110”改為“01100000”,但由于組合邏輯的傳播延遲(凈延遲和信元延遲)它可以用一個序列“00000110 --> 00000010 --> 00000000 --> 01000000 --> 01100000”生成過渡。

在這段時間里,salve_addr為“00000010”,如果wdata[7:0]始終為零且“write_enable” 已經(jīng)被斷言,那么它將在module_rst_b創(chuàng)建一個無用脈沖,從而導致虛假復位。

 

 

圖6:復位路徑的組合邏輯

2. 解決方案

首先注冊組合輸出,然后再將其用作復位源(如圖7所示)。

 

 

圖7:復位路徑的組合邏輯解決方案

3. 問題(II)

在上面的示例中,復位路徑的組合邏輯解決方案并不完善。如果組合邏輯輸入大約在同一時間發(fā)生變化,那么它可能在設(shè)計中觸發(fā)虛假復位。然而,如果組合邏輯的輸入信號變化相互排斥,那么它可能不會引起任何設(shè)計問題。例如,測試模式和功能模式相互排斥。因此復位路徑的測試復用是有效的設(shè)計實踐。

然而,對于某些情況,變化相互排斥的靜態(tài)信號或信號可能會導致設(shè)計出現(xiàn)虛假復位觸發(fā)。下面的示例描述了此類設(shè)計可能出現(xiàn)問題。

 

 

圖8:復位路徑的組合邏輯(問題 2).

在上面的示例中,多路復用結(jié)構(gòu)用于復位路徑,同時進行RTL編碼。其中“mode” 是一個控制信號,不頻繁改變,而mode0_rst_b和mode_1_rst_b是兩個復位事件,然而在合成RTL時,在門控級它被分解成不同的復雜的組合(And-Or-Invert[AOI])信元。雖然在邏輯上它相當于一個多路復用器,但由于不同的信元和凈延遲,每當信號“mode”從 1-->0變化時,final_rst_b都會產(chǎn)生干擾。

4. 解決方案

* 在合成過程中在復位路徑保留多路復用結(jié)構(gòu),因為多路復用結(jié)構(gòu)與其他組合邏輯相比易于產(chǎn)生干擾。MUX Pragma可以在編碼RTL時使用,這將有助于合成工具在復位路徑中保留任何多路復用器。

設(shè)計中的同步復位問題

1. 問題(I)

在許多地方,設(shè)計人員在時鐘方面喜歡同步復位設(shè)計。原因可能是為了節(jié)省一些芯片面積(帶有異步復位輸入的觸發(fā)器比任何不可復位觸發(fā)器都大)或讓系統(tǒng)與時鐘完全同步,也可能有一些其他原因。對于此類設(shè)計,當復位源被斷言時需要向設(shè)計的觸發(fā)器提供時鐘,否則,這些觸發(fā)器可能會在一段時間內(nèi)都不進行初始化。但當該模塊被插入一個系統(tǒng)時,系統(tǒng)設(shè)計人員可能選擇在復位階段禁用其時鐘(如果在一開始不需要激活該模塊),以節(jié)省整個系統(tǒng)的動態(tài)功耗。因此,該模塊甚至在復位去斷言后一段時間內(nèi)都不進行初始化。如果該模塊的任何輸出直接在系統(tǒng)中使用,那么將捕獲未初始化和未知的值(X),這可能會導致系統(tǒng)功能故障。

 

 

圖9:同步復位問題時序圖

2. 解決方案

在復位階段啟用該模塊的時鐘且持續(xù)最短的時間,使該模塊內(nèi)的所有觸發(fā)器都在復位過程中被初始化。 當系統(tǒng)復位被去斷言時,模塊輸出不會有任何未初始化的值。

 

 

圖10:同步復位問題已解決

3. 問題(II)

在時鐘域交叉路徑使用兩個觸發(fā)同步器是常見做法。然而,有時設(shè)計人員對這些觸發(fā)器使用同步復位。相同的RTL代碼是

always @(posedge clk )

if(!sync_rst_b) begin

sync1 <= 1‘b0; sync2 <= 1‘b0 ;

end

else begin

sync1 <= async_in; sync2 <= sync1

end

在硬件中進行了RTL合成后,上面的代碼會在雙觸發(fā)器同步器的同步鏈中引入組合邏輯,這會帶來風險,并縮短sync2觸發(fā)器輸入進入亞穩(wěn)態(tài)的時間。

 

 

圖11:同步復位問題2

2. 解決方案

可用以下方式編寫RTL代碼,以避免同步鏈的組合邏輯。

always @(posedge clk )

if(!sync_rst_b) begin

sync1 <= 1‘b0;

end

else begin

sync1 <= async_in; sync2 <= sync1

end

在上面的代碼中,對sync2觸發(fā)器不使用復位,因此在同步鏈中不會實現(xiàn)組合信元。然而,需要注意sync2需要一個額外的周期才能復位,這不應(yīng)導致設(shè)計出現(xiàn)任何問題。

冗余復位同步器引起的問題

1. 問題

在使用多個異步時鐘的設(shè)計中,設(shè)計人員需要確保在目標寄存器使用的時鐘方面,異步復位的同步去斷言,否則可能導致目標觸發(fā)器發(fā)生時序違反,從而產(chǎn)生亞穩(wěn)態(tài)。復位同步器被用來復位去斷言,與目標時鐘域同步。然而,只有在系統(tǒng)復位去斷言過程中有目標時鐘時才會發(fā)生復位去斷言時序違反。如果在復位去斷言時沒有時鐘,那么便不會有任何時序違反。因此,在設(shè)計多時鐘域模塊時,設(shè)計人員可以讓編譯時間選項繞過該模塊中的那些復位同步器,并讓系統(tǒng)集成商根據(jù)對該模塊的時鐘可用性決定是否需要使用復位同步器。

此外,如果系統(tǒng)時鐘和異步時鐘比非常高,冗余同步器甚至會造成設(shè)計功能性問題。下面描述了這個問題。[!--empirenews.page--]

 

 

圖12:冗余同步器的問題

在上面的設(shè)計中,去斷言與sys clk同步的系統(tǒng)復位被饋送到(mod_clk域)的復位同步器,然后在mod_clk域邏輯中使用該復位。讓我們假定sys clk : mod_clk的時鐘頻率比大于6:1.默認不啟用mod_clk,以節(jié)省動態(tài)功率。當用戶想要啟用mod_clk域邏輯的功能時,便啟用該時鐘。在啟用了該時鐘后,有兩個mod_clk周期的延遲,其中,由于復位同步器導致整個mod_clk域邏輯都處于復位狀態(tài)。在該階段,如果一些數(shù)據(jù)交易從sys clk域開始,將在mod_clk域丟失。

2. 解決方案

雖然這不是大問題,但有時會在客戶一端造成混淆,因為該延遲對客戶不可見。 因此消除混淆的更好的方式是:

* 如果在全局復位去斷言過程中沒有時鐘,則在設(shè)計中繞過/刪除冗余復位同步器。 這當然會節(jié)省一定的門控數(shù)。

* 如果動態(tài)功耗不是問題,用戶可以在mod_clk域邏輯開始運作之前很長時間在啟動代碼選擇啟用mod_clk. 因此,復位去斷言將有足夠的時間傳播。

* 這也可以在軟件中處理,在任何有效操作之前啟用了mod_clk后,設(shè)置兩三個mod_clk周期的延遲。

由于罕見的時鐘路徑導致復位去斷言時序問題

1. 問題

設(shè)計的復位架構(gòu)根據(jù)系統(tǒng)而不同。在一些安全關(guān)鍵設(shè)備中,整個復位狀態(tài)機在安全時鐘上工作,安全時鐘默認啟用。 該時鐘也被用作設(shè)備的默認系統(tǒng)時鐘。

 

 

圖13:罕見時鐘路徑的問題

在上圖中,復位狀態(tài)機(R觸發(fā)器)在default_clk上工作。此外,在復位去斷言過程中,default_clk是sys clk的源。因此,在邏輯上,這兩個時鐘(clk1和clk2)在復位去斷言過程中同步。但是,由于clk1和clk2之間存在巨大的罕見路徑,因此很難平衡這兩個時鐘并視其為同步。 因此,滿足A觸發(fā)器的復位去斷言變得具有挑戰(zhàn)性。

2. 解決方案

異步對待clk1和clk2,并在A觸發(fā)器中使用復位之前放置復位同步器?,F(xiàn)在需要從S2-->A滿足復位去斷言時序(見圖14)。這不應(yīng)是個問題。

 

 

圖14:解決方案

結(jié)束語

這部分主要專注于復位設(shè)計中的故障以及克服這些問題的可能的解決方案。然而,上述解決方案并非唯一的解決方案,也不普遍適用于所有設(shè)計。這些是一些通用的解決方案和建議的指導方針,在特殊情況下可能需要進行修改。在這些情況下,此類問題不僅導致功能故障,還會增加一些額外的調(diào)試時間和工作,從而增加執(zhí)行周期時間。因此,設(shè)計人員需要在設(shè)計的早期階段考慮此類問題。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉