Davicom公司DM9000A和DM9010 ISA NIC 以太網(wǎng)驅(qū)動(dòng)分析
/*
dm9ks.c: Version 2.03 2005/10/17
A Davicom DM9000A/DM9010 ISA NIC fast Ethernet driver for Linux.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
(C)Copyright 1997-2005 DAVICOM Semiconductor,Inc. All Rights Reserved.
V1.00 10/13/2004 Add new function Early transmit & IP/TCP/UDP Checksum
offload enable & flow control is default
V1.1 12/29/2004 Add Two packet mode & modify RX function
V1.2 01/14/2005 Add Early transmit mode
V1.3 03/02/2005 Support kernel 2.6
v1.33 06/08/2005 #define DM9KS_MDRAL 0xf4
#define DM9KS_MDRAH 0xf5
V2.00 01/10/2005 Spenser
- Modification for PXA270 MAINSTONE.
- Modified dmfe_tx_done().
- Add dmfe_timeout().
V2.01 10/07/2005 Modified dmfe_timer()
Dected network speed 10/100M
V2.02 10/12/2005 Use link change to chage db->Speed
dmfe_open() wait for Link OK
V2.03 11/22/2005 Power-off and Power-on PHY in dmfe_init() support IOL
*/
#if defined(MODVERSIONS)
#include
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef CONFIG_ARCH_MAINSTONE
#include
#include
#include
#endif
/* Board/System/Debug information/definition ---------------- */
#define DM9KS_ID 0x90000A46
#define DM9010_ID 0x90100A46
/*-------register name-----------------------*/
#define DM9KS_NCR 0x00 /* Network control Reg.*/
#define DM9KS_NSR 0x01 /* Network Status Reg.*/
#define DM9KS_TCR 0x02 /* TX control Reg.*/
#define DM9KS_RXCR 0x05 /* RX control Reg.*/
#define DM9KS_BPTR 0x08
#define DM9KS_EPCR 0x0b
#define DM9KS_EPAR 0x0c
#define DM9KS_EPDRL 0x0d
#define DM9KS_EPDRH 0x0e
#define DM9KS_GPR 0x1f /* General purpose register */
#define DM9KS_TCR2 0x2d
#define DM9KS_SMCR 0x2f /* Special Mode Control Reg.*/
#define DM9KS_ETXCSR 0x30 /* Early Transmit control/status Reg.*/
#define DM9KS_TCCR 0x31 /* Checksum cntrol Reg. */
#define DM9KS_RCSR 0x32 /* Receive Checksum status Reg.*/
#define DM9KS_MRCMDX 0xf0
#define DM9KS_MRCMD 0xf2
#define DM9KS_MDRAL 0xf4
#define DM9KS_MDRAH 0xf5
#define DM9KS_MWCMD 0xf8
#define DM9KS_TXPLL 0xfc
#define DM9KS_TXPLH 0xfd
#define DM9KS_ISR 0xfe
#define DM9KS_IMR 0xff
/*---------------------------------------------*/
#define DM9KS_REG05 0x30 /* SKIP_CRC/SKIP_LONG */
#define DM9KS_REGFF 0xA3 /* IMR */
#define DM9KS_DISINTR 0x80
#define DM9KS_PHY 0x40 /* PHY address 0x01 */
#define DM9KS_PKT_RDY 0x01 /* Packet ready to receive */
/* Added for PXA of MAINSTONE */
#ifdef CONFIG_ARCH_MAINSTONE
#include
#define DM9KS_MIN_IO (MST_ETH_PHYS + 0x300)
#define DM9KS_MAX_IO (MST_ETH_PHYS + 0x370)
#define DM9K_IRQ MAINSTONE_IRQ(3)
#else
#define DM9KS_MIN_IO 0x300
#define DM9KS_MAX_IO 0x370
#define DM9K_IRQ 3
#endif
#define DM9KS_VID_L 0x28
#define DM9KS_VID_H 0x29
#define DM9KS_PID_L 0x2A
#define DM9KS_PID_H 0x2B
#define DM9KS_RX_INTR 0x01
#define DM9KS_TX_INTR 0x02
#define DM9KS_LINK_INTR 0x20
#define DM9KS_DWORD_MODE 1
#define DM9KS_BYTE_MODE 2
#define DM9KS_WORD_MODE 0
#define TRUE 1
#define FALSE 0
/* Number of continuous Rx packets */
#define CONT_RX_PKT_CNT 10
#define DMFE_TIMER_WUT jiffies+(HZ*5) /* timer wakeup time : 5 second */
#if defined(DM9KS_DEBUG)
#define DMFE_DBUG(dbug_now, msg, vaule)
if (dmfe_debug||dbug_now) printk(KERN_ERR "dmfe: %s %xn", msg, vaule)[!--empirenews.page--]
#else
#define DMFE_DBUG(dbug_now, msg, vaule)
if (dbug_now) printk(KERN_ERR "dmfe: %s %xn", msg, vaule)
#endif
#ifndef CONFIG_ARCH_MAINSTONE
#pragma pack(push, 1)
#endif
typedef struct _RX_DESC
{
u8 rxbyte;
u8 status;
u16 length;
}RX_DESC;
typedef union{
u8 buf[4];
RX_DESC desc;
} rx_t;
#ifndef CONFIG_ARCH_MAINSTONE
#pragma pack(pop)
#endif
enum DM9KS_PHY_mode {
DM9KS_10MHD = 0,
DM9KS_100MHD = 1,
DM9KS_10MFD = 4,
DM9KS_100MFD = 5,
DM9KS_AUTO = 8,
};
/* Structure/enum declaration ------------------------------- */
typedef struct board_info {
u32 reset_counter; /* counter: RESET */
u32 reset_tx_timeout; /* RESET caused by TX Timeout */
u32 io_addr; /* Register I/O base address */
u32 io_data; /* Data I/O address */
int tx_pkt_cnt;
u8 op_mode; /* PHY operation mode */
u8 io_mode; /* 0:word, 2:byte */
u8 device_wait_reset; /* device state */
u8 Speed; /* current speed */
int cont_rx_pkt_cnt;/* current number of continuos rx packets */
struct timer_list timer;
struct net_device_stats stats;
unsigned char srom[128];
spinlock_t lock;
} board_info_t;
/* Global variable declaration ----------------------------- */
/*static int dmfe_debug = 0;*/
static struct net_device * dmfe_dev = NULL;
/* For module input parameter */
static int mode = DM9KS_AUTO;
static int media_mode = DM9KS_AUTO;
static u8 irq = DM9K_IRQ;
static u32 iobase = DM9KS_MIN_IO;
/* function declaration ------------------------------------- */
int dmfe_probe(struct net_device *);
static int dmfe_open(struct net_device *);
static int dmfe_start_xmit(struct sk_buff *, struct net_device *);
static void dmfe_tx_done(unsigned long);
static void dmfe_packet_receive(struct net_device *);
static int dmfe_stop(struct net_device *);
static struct net_device_stats * dmfe_get_stats(struct net_device *);
static int dmfe_do_ioctl(struct net_device *, struct ifreq *, int);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
static void dmfe_interrupt(int , void *, struct pt_regs *);
#else
static irqreturn_t dmfe_interrupt(int , void *, struct pt_regs *);
#endif
static void dmfe_timer(unsigned long);
static void dmfe_init_dm9000(struct net_device *);
static unsigned long cal_CRC(unsigned char *, unsigned int, u8);
static u8 ior(board_info_t *, int);
static void iow(board_info_t *, int, u8);
static u16 phy_read(board_info_t *, int);
static void phy_write(board_info_t *, int, u16);
static u16 read_srom_word(board_info_t *, int);
static void dm9000_hash_table(struct net_device *);
static void dmfe_timeout(struct net_device *);
static void dmfe_reset(struct net_device *);
#if defined(CHECKSUM)
static u8 check_rx_ready(u8);
#endif
//DECLARE_TASKLET(dmfe_tx_tasklet,dmfe_tx_done,0);
/* DM9000 network baord routine ---------------------------- */
/*
Search DM9000 board, allocate space and register it
*/
struct net_device * __init dmfe_probe1(void)
{
struct net_device *dev;
int err;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
dev = init_etherdev(NULL, sizeof(struct board_info));
ether_setup(dev);
#else
dev= alloc_etherdev(sizeof(struct board_info));
#endif
if(!dev)
return ERR_PTR(-ENOMEM);
SET_MODULE_OWNER(dev);
err = dmfe_probe(dev);
if (err)
goto out;
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)
err = register_netdev(dev);
if (err)
goto out1;
#endif
return dev;
out1:
release_region(dev->base_addr,2);
out:
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
kfree(dev);
#else
free_netdev(dev);
#endif
return ERR_PTR(err);
}
int __init dmfe_probe(struct net_device *dev)
{
struct board_info *db; /* Point a board information structure */
u32 id_val;
u16 i, dm9000_found = FALSE;
DMFE_DBUG(0, "dmfe_probe()",0);
/* Search All DM9000 serial NIC */
do {
outb(DM9KS_VID_L, iobase);
id_val = inb(iobase + 4);
outb(DM9KS_VID_H, iobase);
id_val |= inb(iobase + 4) << 8;
outb(DM9KS_PID_L, iobase);
id_val |= inb(iobase + 4) << 16;
outb(DM9KS_PID_H, iobase);
id_val |= inb(iobase + 4) << 24;
if (id_val == DM9KS_ID || id_val == DM9010_ID) {[!--empirenews.page--]
/* Request IO from system */
if(!request_region(iobase, 2, dev->name))
return -ENODEV;
printk("
dm9000_found = TRUE;
/* Allocated board information structure */
memset(dev->priv, 0, sizeof(struct board_info));
db = (board_info_t *)dev->priv;
dmfe_dev = dev;
db->io_addr = iobase;
db->io_data = iobase + 4;
/* driver system function */
dev->base_addr = iobase;
dev->irq = irq;
dev->open = &dmfe_open;
dev->hard_start_xmit = &dmfe_start_xmit;
dev->watchdog_timeo = HZ;
dev->tx_timeout = dmfe_timeout;
dev->stop = &dmfe_stop;
dev->get_stats = &dmfe_get_stats;
dev->set_multicast_list = &dm9000_hash_table;
dev->do_ioctl = &dmfe_do_ioctl;
#if defined(CHECKSUM)
dev->features = dev->features | NETIF_F_NO_CSUM;
#endif
/* Read SROM content */
for (i=0; i<64; i++)
((u16 *)db->srom)[i] = read_srom_word(db, i);
/* Set Node Address */
for (i=0; i<6; i++)
dev->dev_addr[i] = db->srom[i];
}//end of if()
iobase += 0x10;
}while(!dm9000_found && iobase <= DM9KS_MAX_IO);
return dm9000_found ? 0:-ENODEV;
}
/*
Open the interface.
The interface is opened whenever "ifconfig" actives it.
*/
static int dmfe_open(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
u8 reg_nsr;
int i;
DMFE_DBUG(0, "dmfe_open", 0);
if (request_irq(dev->irq,&dmfe_interrupt,SA_SHIRQ,dev->name,dev))
return -EAGAIN;
/* Initilize DM910X board */
dmfe_init_dm9000(dev);
/* Init driver variable */
db->reset_counter = 0;
db->reset_tx_timeout = 0;
db->cont_rx_pkt_cnt = 0;
/* check link state and media speed */
db->Speed =10;
i=0;
do {
reg_nsr = ior(db,0x1);
if(reg_nsr & 0x40) /* link OK!! */
{
/* wait for detected Speed */
mdelay(200);
reg_nsr = ior(db,0x1);
if(reg_nsr & 0x80)
db->Speed =10;
else
db->Speed =100;
break;
}
i++;
mdelay(1);
}while(i<3000); /* wait 3 second */
//printk("i=%d Speed=%dn",i,db->Speed);
/* set and active a timer process */
init_timer(&db->timer);
db->timer.expires = DMFE_TIMER_WUT * 2;
db->timer.data = (unsigned long)dev;
db->timer.function = &dmfe_timer;
add_timer(&db->timer); //Move to DM9000 initiallization was finished.
netif_start_queue(dev);
return 0;
}
/* Set PHY operationg mode
*/
static void set_PHY_mode(board_info_t *db)
{
u16 phy_reg0 = 0x1200; /* Auto-negotiation & Restart Auto-negotiation */
u16 phy_reg4 = 0x01e1; /* Default flow control disable*/
if ( !(db->op_mode & DM9KS_AUTO) ) // op_mode didn't auto sense */
{
switch(db->op_mode) {
case DM9KS_10MHD: phy_reg4 = 0x21;
phy_reg0 = 0x1000;
break;
case DM9KS_10MFD: phy_reg4 = 0x41;
phy_reg0 = 0x1100;
break;
case DM9KS_100MHD: phy_reg4 = 0x81;
phy_reg0 = 0x3000;
break;
case DM9KS_100MFD: phy_reg4 = 0x101;
phy_reg0 = 0x3100;
break;
default:
break;
} // end of switch
} // end of if
phy_write(db, 0, phy_reg0);
phy_write(db, 4, phy_reg4);
}
/*
Initilize dm9000 board
*/
static void dmfe_init_dm9000(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
DMFE_DBUG(0, "dmfe_init_dm9000()", 0);
/* set the internal PHY power-on, GPIOs normal, and wait 2ms */
iow(db, DM9KS_GPR, 1); /* Power-Down PHY */
udelay(500);
iow(db, DM9KS_GPR, 0); /* GPR (reg_1Fh)bit GPIO0=0 pre-activate PHY */
udelay(20); /* wait 2ms for PHY power-on ready */
/* do a software reset and wait 20us */
iow(db, DM9KS_NCR, 3);
udelay(20); /* wait 20us at least for software reset ok */
iow(db, DM9KS_NCR, 3); /* NCR (reg_00h) bit[0] RST=1 & Loopback=1, reset on */
udelay(20); /* wait 20us at least for software reset ok */
/* I/O mode */
db->io_mode = ior(db, DM9KS_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
/* Set PHY */
db->op_mode = media_mode;
set_PHY_mode(db);
/* Program operating register */
iow(db, DM9KS_NCR, 0);
iow(db, DM9KS_TCR, 0); /* TX Polling clear */[!--empirenews.page--]
iow(db, DM9KS_BPTR, 0x3f); /* Less 3kb, 600us */
iow(db, DM9KS_SMCR, 0); /* Special Mode */
iow(db, DM9KS_NSR, 0x2c); /* clear TX status */
iow(db, DM9KS_ISR, 0x0f); /* Clear interrupt status */
/* Added by jackal at 03/29/2004 */
#if defined(CHECKSUM)
iow(db, DM9KS_TCCR, 0x07); /* TX UDP/TCP/IP checksum enable */
iow(db, DM9KS_RCSR, 0x02); /*Receive checksum enable */
#endif
#if defined(ETRANS)
iow(db, DM9KS_ETXCSR, 0x83);
#endif
/* Set address filter table */
dm9000_hash_table(dev);
/* Activate DM9000A/DM9010 */
iow(db, DM9KS_RXCR, DM9KS_REG05 | 1); /* RX enable */
iow(db, DM9KS_IMR, DM9KS_REGFF); // Enable TX/RX interrupt mask
/* Init Driver variable */
db->tx_pkt_cnt = 0;
netif_carrier_on(dev);
spin_lock_init(&db->lock);
}
/*
Hardware start transmission.
Send a packet to media from the upper layer.
*/
static int dmfe_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
char * data_ptr;
int i, tmplen;
if(db->Speed == 10)
{if (db->tx_pkt_cnt >= 1) return 1;}
else
{if (db->tx_pkt_cnt >= 2) return 1;}
/* packet counting */
db->tx_pkt_cnt++;
db->stats.tx_packets++;
db->stats.tx_bytes+=skb->len;
if (db->Speed == 10)
{if (db->tx_pkt_cnt >= 1) netif_stop_queue(dev);}
else
{if (db->tx_pkt_cnt >= 2) netif_stop_queue(dev);}
/* Disable all interrupt */
iow(db, DM9KS_IMR, DM9KS_DISINTR);
/* Set TX length to reg. 0xfc & 0xfd */
iow(db, DM9KS_TXPLL, (skb->len & 0xff));
iow(db, DM9KS_TXPLH, (skb->len >> 8) & 0xff);
/* Move data to TX SRAM */
data_ptr = (char *)skb->data;
outb(DM9KS_MWCMD, db->io_addr); // Write data into SRAM trigger
switch(db->io_mode)
{
case DM9KS_BYTE_MODE:
for (i = 0; i < skb->len; i++)
outb((data_ptr[i] & 0xff), db->io_data);
break;
case DM9KS_WORD_MODE:
tmplen = (skb->len + 1) / 2;
for (i = 0; i < tmplen; i++)
outw(((u16 *)data_ptr)[i], db->io_data);
break;
case DM9KS_DWORD_MODE:
tmplen = (skb->len + 3) / 4;
for (i = 0; i< tmplen; i++)
outl(((u32 *)data_ptr)[i], db->io_data);
break;
}
#if !defined(ETRANS)
/* Issue TX polling command */
iow(db, DM9KS_TCR, 0x1); /* Cleared after TX complete*/
#endif
/* Saved the time stamp */
dev->trans_start = jiffies;
db->cont_rx_pkt_cnt =0;
/* Free this SKB */
dev_kfree_skb(skb);
/* Re-enable interrupt */
iow(db, DM9KS_IMR, DM9KS_REGFF);
return 0;
}
/*
Stop the interface.
The interface is stopped when it is brought.
*/
static int dmfe_stop(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
DMFE_DBUG(0, "dmfe_stop", 0);
/* deleted timer */
del_timer(&db->timer);
netif_stop_queue(dev);
/* free interrupt */
free_irq(dev->irq, dev);
/* RESET devie */
phy_write(db, 0x00, 0x8000); /* PHY RESET */
iow(db, DM9KS_GPR, 0x01); /* Power-Down PHY */
iow(db, DM9KS_IMR, DM9KS_DISINTR); /* Disable all interrupt */
iow(db, DM9KS_RXCR, 0x00); /* Disable RX */
/* Dump Statistic counter */
#if FALSE
printk("nRX FIFO OVERFLOW %lxn", db->stats.rx_fifo_errors);
printk("RX CRC %lxn", db->stats.rx_crc_errors);
printk("RX LEN Err %lxn", db->stats.rx_length_errors);
printk("RESET %xn", db->reset_counter);
printk("RESET: TX Timeout %xn", db->reset_tx_timeout);
printk("g_TX_nsr %xn", g_TX_nsr);
#endif
return 0;
}
static void dmfe_tx_done(unsigned long unused)
{
struct net_device *dev = dmfe_dev;
board_info_t *db = (board_info_t *)dev->priv;
int nsr;
DMFE_DBUG(0, "dmfe_tx_done()", 0);
nsr = ior(db, DM9KS_NSR);
if(nsr & 0x04) db->tx_pkt_cnt--;
if(nsr & 0x08) db->tx_pkt_cnt--;
if (db->tx_pkt_cnt < 0)
{
printk("[dmfe_tx_done] tx_pkt_cnt ERROR!!n");
db->tx_pkt_cnt =0;
}
if (db->Speed == 10)
{if(db->tx_pkt_cnt < 1 ) netif_wake_queue(dev);}
else
{if(db->tx_pkt_cnt < 2 ) netif_wake_queue(dev);}
return;
}
/*
DM9000 insterrupt handler[!--empirenews.page--]
receive the packet to upper layer, free the transmitted packet
*/
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
static void dmfe_interrupt(int irq, void *dev_id, struct pt_regs *regs)
#else
static irqreturn_t dmfe_interrupt(int irq, void *dev_id, struct pt_regs *regs)
#endif
{
struct net_device *dev = dev_id;
board_info_t *db;
int int_status,i;
u8 reg_save;
DMFE_DBUG(0, "dmfe_interrupt()", 0);
/* A real interrupt coming */
db = (board_info_t *)dev->priv;
spin_lock(&db->lock);
/* Save previous register address */
reg_save = inb(db->io_addr);
/* Disable all interrupt */
iow(db, DM9KS_IMR, DM9KS_DISINTR);
/* Got DM9000A/DM9010 interrupt status */
int_status = ior(db, DM9KS_ISR); /* Got ISR */
iow(db, DM9KS_ISR, int_status); /* Clear ISR status */
/* Link status change */
if (int_status & DM9KS_LINK_INTR)
{
netif_stop_queue(dev);
for(i=0; i<500; i++) /*wait link OK, waiting time =0.5s */
{
phy_read(db,0x1);
if(phy_read(db,0x1) & 0x4) /*Link OK*/
{
/* wait for detected Speed */
for(i=0; i<200;i++)
udelay(1000);
/* set media speed */
if(phy_read(db,0)&0x2000) db->Speed =100;
else db->Speed =10;
break;
}
udelay(1000);
}
netif_wake_queue(dev);
//printk("[INTR]i=%d speed=%dn",i, (int)(db->Speed));
}
/* Received the coming packet */
if (int_status & DM9KS_RX_INTR)
dmfe_packet_receive(dev);
/* Trnasmit Interrupt check */
if (int_status & DM9KS_TX_INTR)
dmfe_tx_done(0);
if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
{
iow(db, DM9KS_IMR, 0xa2);
}
else
{
/* Re-enable interrupt mask */
iow(db, DM9KS_IMR, DM9KS_REGFF);
}
/* Restore previous register address */
outb(reg_save, db->io_addr);
spin_unlock(&db->lock);
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,5,0)
return IRQ_HANDLED;
#endif
}
/*
Get statistics from driver.
*/
static struct net_device_stats * dmfe_get_stats(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
DMFE_DBUG(0, "dmfe_get_stats", 0);
return &db->stats;
}
/*
Process the upper socket ioctl command
*/
static int dmfe_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
DMFE_DBUG(0, "dmfe_do_ioctl()", 0);
return 0;
}
/* Our watchdog timed out. Called by the networking layer */
static void
dmfe_timeout(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
DMFE_DBUG(0, "dmfe_TX_timeout()", 0);
printk("TX time-out -- dmfe_timeout().n");
db->reset_tx_timeout++;
db->stats.tx_errors++;
#if FALSE
printk("TX packet count = %dn", db->tx_pkt_cnt);
printk("TX timeout = %dn", db->reset_tx_timeout);
printk("22H=0x%02x 23H=0x%02xn",ior(db,0x22),ior(db,0x23));
printk("faH=0x%02x fbH=0x%02xn",ior(db,0xfa),ior(db,0xfb));
#endif
dmfe_reset(dev);
}
static void dmfe_reset(struct net_device * dev)
{
board_info_t *db = (board_info_t *)dev->priv;
u8 reg_save;
int i;
/* Save previous register address */
reg_save = inb(db->io_addr);
netif_stop_queue(dev);
db->reset_counter++;
dmfe_init_dm9000(dev);
db->Speed =10;
for(i=0; i<1000; i++) /*wait link OK, waiting time=1 second */
{
if(phy_read(db,0x1) & 0x4) /*Link OK*/
{
if(phy_read(db,0)&0x2000) db->Speed =100;
else db->Speed =10;
break;
}
udelay(1000);
}
netif_wake_queue(dev);
/* Restore previous register address */
outb(reg_save, db->io_addr);
}
/*
A periodic timer routine
*/
static void dmfe_timer(unsigned long data)
{
struct net_device * dev = (struct net_device *)data;
board_info_t *db = (board_info_t *)dev->priv;
DMFE_DBUG(0, "dmfe_timer()", 0);
if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
{
db->cont_rx_pkt_cnt=0;
iow(db, DM9KS_IMR, DM9KS_REGFF);
}
/* Set timer again */
db->timer.expires = DMFE_TIMER_WUT;
add_timer(&db->timer);
return;
}
#if !defined(CHECKSUM)[!--empirenews.page--]
#define check_rx_ready(a) ((a) == 0x01)
#else
inline u8 check_rx_ready(u8 rxbyte)
{
if (!(rxbyte & 0x01))
return 0;
return ((rxbyte >> 4) | 0x01);
}
#endif
/*
Received a packet and pass to upper layer
*/
static void dmfe_packet_receive(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
struct sk_buff *skb;
u8 rxbyte, val;
u16 i, GoodPacket, tmplen = 0, MDRAH, MDRAL;
u32 tmpdata;
rx_t rx;
u16 * ptr = (u16*)℞
u8* rdptr;
DMFE_DBUG(0, "dmfe_packet_receive()", 0);
do {
/*store the value of Memory Data Read address register*/
MDRAH=ior(db, DM9KS_MDRAH);
MDRAL=ior(db, DM9KS_MDRAL);
ior(db, DM9KS_MRCMDX); /* Dummy read */
rxbyte = inb(db->io_data); /* Got most updated data */
/* packet ready to receive check */
if(!(val = check_rx_ready(rxbyte))) break;
/* A packet ready now & Get status/length */
GoodPacket = TRUE;
outb(DM9KS_MRCMD, db->io_addr);
/* Read packet status & length */
switch (db->io_mode)
{
case DM9KS_BYTE_MODE:
*ptr = inb(db->io_data) +
(inb(db->io_data) << 8);
*(ptr+1) = inb(db->io_data) +
(inb(db->io_data) << 8);
break;
case DM9KS_WORD_MODE:
*ptr = inw(db->io_data);
*(ptr+1) = inw(db->io_data);
break;
case DM9KS_DWORD_MODE:
tmpdata = inl(db->io_data);
*ptr = tmpdata;
*(ptr+1) = tmpdata >> 16;
break;
default:
break;
}
/* Packet status check */
if (rx.desc.status & 0xbf)
{
GoodPacket = FALSE;
if (rx.desc.status & 0x01)
{
db->stats.rx_fifo_errors++;
printk("
}
if (rx.desc.status & 0x02)
{
db->stats.rx_crc_errors++;
printk("
}
if (rx.desc.status & 0x80)
{
db->stats.rx_length_errors++;
printk("
}
if (rx.desc.status & 0x08)
printk("
}
if (!GoodPacket)
{
// drop this packet!!!
switch (db->io_mode)
{
case DM9KS_BYTE_MODE:
for (i=0; i
inb(db->io_data);
break;
case DM9KS_WORD_MODE:
tmplen = (rx.desc.length + 1) / 2;
for (i = 0; i < tmplen; i++)
inw(db->io_data);
break;
case DM9KS_DWORD_MODE:
tmplen = (rx.desc.length + 3) / 4;
for (i = 0; i < tmplen; i++)
inl(db->io_data);
break;
}
continue;/*next the packet*/
}
skb = dev_alloc_skb(rx.desc.length+4);
if (skb == NULL )
{
printk(KERN_INFO "%s: Memory squeeze.n", dev->name);
/*re-load the value into Memory data read address register*/
iow(db,DM9KS_MDRAH,MDRAH);
iow(db,DM9KS_MDRAL,MDRAL);
return;
}
else
{
/* Move data from DM9000 */
skb->dev = dev;
skb_reserve(skb, 2);
rdptr = (u8*)skb_put(skb, rx.desc.length - 4);
/* Read received packet from RX SARM */
switch (db->io_mode)
{
case DM9KS_BYTE_MODE:
for (i=0; i
rdptr[i]=inb(db->io_data);
break;
case DM9KS_WORD_MODE:
tmplen = (rx.desc.length + 1) / 2;
for (i = 0; i < tmplen; i++)
((u16 *)rdptr)[i] = inw(db->io_data);
break;
case DM9KS_DWORD_MODE:
tmplen = (rx.desc.length + 3) / 4;
for (i = 0; i < tmplen; i++)
((u32 *)rdptr)[i] = inl(db->io_data);
break;
}
/* Pass to upper layer */
skb->protocol = eth_type_trans(skb,dev);
#if defined(CHECKSUM)
if (val == 0x01)
skb->ip_summed = CHECKSUM_UNNECESSARY;
#endif
netif_rx(skb);
dev->last_rx=jiffies;
db->stats.rx_packets++;
db->stats.rx_bytes += rx.desc.length;
db->cont_rx_pkt_cnt++;
if (db->cont_rx_pkt_cnt>=CONT_RX_PKT_CNT)
{
dmfe_tx_done(0);
break;
}
}
}while((rxbyte & 0x01) == DM9KS_PKT_RDY);
DMFE_DBUG(0, "[END]dmfe_packet_receive()", 0);
}
/*
Read a word data from SROM
*/
static u16 read_srom_word(board_info_t *db, int offset)
{
iow(db, DM9KS_EPAR, offset);
iow(db, DM9KS_EPCR, 0x4);
udelay(200);
iow(db, DM9KS_EPCR, 0x0);[!--empirenews.page--]
return (ior(db, DM9KS_EPDRL) + (ior(db, DM9KS_EPDRH) << 8) );
}
/*
Set DM9000A/DM9010 multicast address
*/
static void dm9000_hash_table(struct net_device *dev)
{
board_info_t *db = (board_info_t *)dev->priv;
struct dev_mc_list *mcptr = dev->mc_list;
int mc_cnt = dev->mc_count;
u32 hash_val;
u16 i, oft, hash_table[4];
DMFE_DBUG(0, "dm9000_hash_table()", 0);
/* Set Node address */
for (i = 0, oft = 0x10; i < 6; i++, oft++)
iow(db, oft, dev->dev_addr[i]);
/* Clear Hash Table */
for (i = 0; i < 4; i++)
hash_table[i] = 0x0;
/* broadcast address */
hash_table[3] = 0x8000;
/* the multicast address in Hash Table : 64 bits */
for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) {
hash_val = cal_CRC((char *)mcptr->dmi_addr, 6, 0) & 0x3f;
hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
}
/* Write the hash table to MAC MD table */
for (i = 0, oft = 0x16; i < 4; i++) {
iow(db, oft++, hash_table[i] & 0xff);
iow(db, oft++, (hash_table[i] >> 8) & 0xff);
}
}
/*
Calculate the CRC valude of the Rx packet
flag = 1 : return the reverse CRC (for the received packet CRC)
0 : return the normal CRC (for Hash Table index)
*/
static unsigned long cal_CRC(unsigned char * Data, unsigned int Len, u8 flag)
{
u32 crc = ether_crc_le(Len, Data);
if (flag)
return ~crc;
return crc;
}
/*
Read a byte from I/O port
*/
static u8 ior(board_info_t *db, int reg)
{
outb(reg, db->io_addr);
return inb(db->io_data);
}
/*
Write a byte to I/O port
*/
static void iow(board_info_t *db, int reg, u8 value)
{
outb(reg, db->io_addr);
outb(value, db->io_data);
}
/*
Read a word from phyxcer
*/
static u16 phy_read(board_info_t *db, int reg)
{
/* Fill the phyxcer register into REG_0C */
iow(db, DM9KS_EPAR, DM9KS_PHY | reg);
iow(db, DM9KS_EPCR, 0xc); /* Issue phyxcer read command */
udelay(100); /* Wait read complete */
iow(db, DM9KS_EPCR, 0x0); /* Clear phyxcer read command */
/* The read data keeps on REG_0D & REG_0E */
return ( ior(db, DM9KS_EPDRH) << 8 ) | ior(db, DM9KS_EPDRL);
}
/*
Write a word to phyxcer
*/
static void phy_write(board_info_t *db, int reg, u16 value)
{
/* Fill the phyxcer register into REG_0C */
iow(db, DM9KS_EPAR, DM9KS_PHY | reg);
/* Fill the written data into REG_0D & REG_0E */
iow(db, DM9KS_EPDRL, (value & 0xff));
iow(db, DM9KS_EPDRH, ( (value >> 8) & 0xff));
iow(db, DM9KS_EPCR, 0xa); /* Issue phyxcer write command */
udelay(500); /* Wait write complete */
iow(db, DM9KS_EPCR, 0x0); /* Clear phyxcer write command */
}
#ifdef MODULE
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Davicom DM9000A/DM9010 ISA/uP Fast Ethernet Driver");
MODULE_PARM(mode, "i");
MODULE_PARM(irq, "i");
MODULE_PARM(iobase, "i");
MODULE_PARM_DESC(mode,"Media Speed, 0:10MHD, 1:10MFD, 4:100MHD, 5:100MFD");
MODULE_PARM_DESC(irq,"EtherLink IRQ number");
MODULE_PARM_DESC(iobase, "EtherLink I/O base address");
/* Description:
when user used insmod to add module, system invoked init_module()
to initilize and register.
*/
int init_module(void)
{
switch(mode) {
case DM9KS_10MHD:
case DM9KS_100MHD:
case DM9KS_10MFD:
case DM9KS_100MFD:
media_mode = mode;
break;
default:
media_mode = DM9KS_AUTO;
}
dmfe_dev = dmfe_probe1();
if(IS_ERR(dmfe_dev))
return PTR_ERR(dmfe_dev);
return 0;
}
/* Description:
when user used rmmod to delete module, system invoked clean_module()
to un-register DEVICE.
*/
void cleanup_module(void)
{
struct net_device *dev = dmfe_dev;
DMFE_DBUG(0, "clean_module()", 0);
unregister_netdev(dmfe_dev);
release_region(dev->base_addr, 2);
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0)
kfree(dev);
#else
free_netdev(dev);
#endif
DMFE_DBUG(0, "clean_module() exit", 0);
}
#endif