A-DAD-A型有機小分子受體光伏材料
在科技的發(fā)展道路上,離不開能源的助力,特別是再科技飛速發(fā)展的今天,而地球上的能源有限,就需要科研人員不斷開發(fā)新能源,這就再當下最需要研發(fā)太陽能的使用。從中南大學官網(wǎng)獲悉,該?;瘜W化工學院鄒應萍教授課題組在2017年首次將電子受體單元苯并三氮唑引入非富勒烯受體稠環(huán)中心核,形成一種DAD稠環(huán)結(jié)構(gòu),進而合成了A-DAD-A型有機小分子受體光伏材料。
據(jù)了解,這種A-DAD-A型小分子受體可有效拓寬吸收光譜,降低器件電壓損失,此分子設計策略為材料合成提供了新思路。隨后,保持中心核不變,用并二噻吩取代稠環(huán)兩端的噻吩,將此分子體系從五元環(huán)拓展為七元環(huán),并改變不同的端基,設計合成了Y1和Y2非富勒烯受體。
而通過對材料表征發(fā)現(xiàn),吡咯橋環(huán)和并噻吩的引入可以拓寬非富勒烯受體分子的光譜吸收,從而顯著提高器件的短路電流。苯并三氮唑引入稠環(huán)中心核,可有效提高受體分子的熒光量子產(chǎn)率。高的熒光量子產(chǎn)率可增加有效的輻射復合通道,從而提高器件的電致發(fā)光量子效率(~ 0.5×10-4)。結(jié)果表明三氮唑吸電子核的引入,大大減少非輻射復合所造成的損失。該工作為高效有機太陽能電池材料設計及如何降低器件電壓損失并同時獲得高短路電流提供了新思路。
基于課題組提出的A-DAD-A型分子設計策略,進一步通過分子結(jié)構(gòu)優(yōu)化,將具有更高電子遷移率的苯并噻二唑替代苯并三氮唑引入到分子骨架中,在并二噻吩的β位引入烷基鏈調(diào)控溶解性和分子構(gòu)象,設計合成了Y6非富勒烯受體。
該分子具有較強的吸收和較窄的帶隙(1.33 eV)以及優(yōu)異的電子遷移率,制備了正向/反向器件的能量轉(zhuǎn)換效率均為15.7%的單結(jié)有機太陽能電池(給體聚合物為PM6),為已報道的單結(jié)有機太陽能電池效率的世界最高紀錄。太陽能雖然可以產(chǎn)生很大能量,但是現(xiàn)在的技術還不足以保證人類所有的運轉(zhuǎn),這就需要我們保護能源,從自己做起,從身邊的點滴做起,節(jié)約能源,是我們?nèi)祟惷恳粋€人應盡的責任。