了解PFC對(duì)實(shí)現(xiàn)高能效至關(guān)重要
認(rèn)識(shí)到需要改進(jìn),各國(guó)政府和行業(yè)協(xié)會(huì)都制定了書面標(biāo)準(zhǔn),在某些情況下必須在產(chǎn)品投放市場(chǎng)前就滿足這些標(biāo)準(zhǔn)。關(guān)注成本或有環(huán)保意識(shí)的客戶在做出購(gòu)買決定時(shí)依賴于這些標(biāo)準(zhǔn),以確信他們?cè)谫?gòu)買高能效的產(chǎn)品。
需要解決的一個(gè)關(guān)鍵領(lǐng)域是功率因數(shù)校正(PFC)級(jí),包括電磁干擾(EMI)濾波器。
高能效不僅僅在單個(gè)點(diǎn)
對(duì)于任何與電源有關(guān)的應(yīng)用,能效一直是個(gè)問題,也是制造商在其規(guī)格中規(guī)定的一個(gè)參數(shù)。然而,在過去高能效被認(rèn)為是單個(gè)點(diǎn)盡可能最好的數(shù)字,通常在滿載的75%左右。
因此,制造商將注意力集中在這一負(fù)載水平,以提高他們所理解的產(chǎn)品能效。但實(shí)際上器件在這個(gè)功率水平上只工作一小部分時(shí)間。在實(shí)際應(yīng)用中,特別是具有動(dòng)態(tài)負(fù)載的應(yīng)用中,這代表實(shí)際能效遠(yuǎn)遠(yuǎn)低于預(yù)期。
為了解決這種情況,現(xiàn)代能源標(biāo)準(zhǔn)考慮的是整個(gè)能效曲線的性能,而不僅僅是曲線上的最佳點(diǎn)。因此,設(shè)計(jì)人員正在研究如何設(shè)計(jì)電源轉(zhuǎn)換系統(tǒng)的關(guān)鍵器件,以在低負(fù)載和中等負(fù)載水平下工作得更好。最關(guān)鍵的一個(gè)領(lǐng)域是PFC級(jí)和EMI濾波器,二者共消耗高達(dá)8%的輸出功率。
PFC概述
電力公司的供電電壓總是正弦的,但線路電流的波形和相位取決于所供電的負(fù)載。對(duì)于最簡(jiǎn)單的電阻負(fù)載,負(fù)載電流也是正弦的,并且在相位上使功率易于計(jì)算。
如果負(fù)載中有電抗元件,如電感或電容器,則負(fù)載電流保持正弦,但相移與電壓有關(guān)。在這種情況下,有功功率(也稱為“實(shí)際”或“平均”功率)像以前一樣計(jì)算,但要乘以相角(位移因子)的余弦。無功負(fù)載越多,有功功率越低。
非線性負(fù)載的情況更復(fù)雜,例如集成一個(gè)二極管橋和大輸入電容的典型開關(guān)電源的輸入級(jí)。在這里,電流是一系列浪涌尖峰,計(jì)算功率要使用傅里葉變換(Fourier transformation)。
圖1:無功負(fù)載(左)和非線性負(fù)載(右)的電壓(藍(lán)色)和電流(紅色)
平均兩個(gè)正弦波的乘積需要復(fù)雜的計(jì)算,只有當(dāng)兩個(gè)波形具有相同的頻率時(shí),才能給出一個(gè)非零的結(jié)果。但由此可以得出,只有基本分量才能提供真正的功率,而諧波只產(chǎn)生無用的循環(huán)電流。
與位移因子類似,失真因子模擬失真(非正弦)波形對(duì)實(shí)際功率的影響,將實(shí)際功率定義為均方根電壓、均方根電流和這兩個(gè)因子的乘積。進(jìn)一步分析將表明總諧波失真(THD)。
實(shí)際上,系統(tǒng)的功率因數(shù)只是位移和失真因子的乘積,因此,真正的功率是均方根電壓、均方根電流和功率因數(shù)的乘積。
校正功率因數(shù)的實(shí)用方法
涉及PFC的主要標(biāo)準(zhǔn)是EN 61000-3-2 ,這是為了最小化從電網(wǎng)提供的任何電流的THD而編寫的,通過定義從第二次到第四十次的所有諧波的最大幅值來實(shí)現(xiàn)。PFC的要求也在其他文件中(例如能源之星規(guī)范Energy Star)有所提及,許多人認(rèn)為這導(dǎo)致了PFC技術(shù)普遍用于許多應(yīng)用。
到目前為止,用于滿足這些標(biāo)準(zhǔn)的最常見和最有效的PFC是有源PFC。一種典型的方法是在輸入整流橋和大電容器之間添加一個(gè)PFC預(yù)穩(wěn)壓器,以提供恒定的電壓,同時(shí)確保電流波形是正弦的。
圖2:PFC在二極管橋和大電容器之間
這種方法除了明顯提高功率因數(shù)外,還有許多好處。從PFC階段的輸出通常是一個(gè)相當(dāng)好調(diào)節(jié)的400 V,這使得下游轉(zhuǎn)換器的設(shè)計(jì)更容易,成本更低。另外,無脈沖電流降低了EMI濾波要求,減少了體積和成本.
然而,這種類型的PFC預(yù)轉(zhuǎn)換器不能達(dá)到100%的能效,因此,確實(shí)造成了系統(tǒng)損耗。在任何電源系統(tǒng)中,都有兩種主要類型的損耗,開關(guān)和導(dǎo)通。導(dǎo)通損耗是兩種損耗之和:一種由于橋二極管的正向電壓等因素與系統(tǒng)功率成正比,另一種與系統(tǒng)功率平方成正比,從而構(gòu)成阻抗損耗如MOSFET的導(dǎo)通電阻。在較高的功率水平下,后者對(duì)能效的影響最大。
圖3:開關(guān)和導(dǎo)通損耗構(gòu)成電源系統(tǒng)的總損耗
另一方面,開關(guān)損耗很大部分與電流成正比,因此與傳輸?shù)墓β食烧?。而其它部分是恒定的,與系統(tǒng)的功率無關(guān)。它們是由寄生電容和電荷電流引起的,通常與系統(tǒng)的開關(guān)頻率成正比。隨著設(shè)計(jì)人員增加工作頻率以減少系統(tǒng)尺寸,開關(guān)損耗成為一個(gè)更大的挑戰(zhàn),特別是在較低的功率水平下,它們?cè)谀苄p耗中占相當(dāng)大比例。
PFC控制方案
PFC的各種控制方案都是為了滿足不同系統(tǒng)的需要而開發(fā)的,但總目標(biāo)都是降低輕載下的開關(guān)損耗和較重負(fù)載下的導(dǎo)通損耗。
如圖所示,有三種基本的控制方案。連續(xù)導(dǎo)通模式(CCM)在固定頻率工作和限制電感電流紋波,同時(shí)支持更高損耗。它通常用于較高功率系統(tǒng)(>300 W)。
臨界導(dǎo)通模式(CrM)在電感電流降到零時(shí)開始一個(gè)新的開關(guān)周期,從而可省去快速恢復(fù)二極管。這導(dǎo)致可變開關(guān)頻率具有較大紋波電流。這種簡(jiǎn)單而低成本的方案廣泛用于包括照明在內(nèi)的低功耗應(yīng)用。隨著低導(dǎo)通電阻的MOSFET越來越普遍,CrM正用于更高功率的應(yīng)用中。
圖4:初級(jí)單路PFC工作模式
頻率鉗位臨界導(dǎo)通模式(FCCrM)是在幾年前由安森美半導(dǎo)體推出的,用以限制CrM下的擴(kuò)頻。在頻率最高的輕載下,工作模式改為非連續(xù)導(dǎo)通模式(DCM),以降低開關(guān)損耗。額外的電路解決了DCM中典型的“死區(qū)時(shí)間”,從而確保當(dāng)前的波形是正確的形狀。