恩智浦半導(dǎo)體與臺(tái)積電于國(guó)際電子器件會(huì)議發(fā)表七項(xiàng)半導(dǎo)體創(chuàng)新技術(shù)
由飛利浦創(chuàng)建的獨(dú)立半導(dǎo)體公司恩智浦半導(dǎo)體 (NXP Semiconductors)與臺(tái)灣積體電路制造股份有限公司于美國(guó)華盛頓特區(qū)(Washington D.C.)舉行的國(guó)際電子器件會(huì)議(International Electron Devices Meeting,IEDM)上共同發(fā)表七篇技術(shù)文章,報(bào)告雙方通過(guò)恩智浦-臺(tái)積電研究中心(NXP-TSMC Research Center)合作開發(fā)的半導(dǎo)體技術(shù)及制程方面的創(chuàng)新。
在會(huì)議中,恩智浦 –臺(tái)積電研究中心發(fā)表了創(chuàng)新的嵌入式存儲(chǔ)技術(shù),這與傳統(tǒng)的非易失性存儲(chǔ)器相較,速度最多可以快上1,000倍,同時(shí)也具備小尺寸及低功耗等優(yōu)勢(shì),預(yù)估其功耗較目前的存儲(chǔ)器至少小十分之一,制造成本也比一般的嵌入式存儲(chǔ)器節(jié)省百分之五到十。此外,在使用近距無(wú)線通信技術(shù)(NFC,Near Field Communication)進(jìn)行移動(dòng)支付或數(shù)據(jù)傳輸時(shí),此技術(shù)有助于避免數(shù)據(jù)干擾并可以增加數(shù)據(jù)傳輸?shù)陌踩浴?/P>
另一個(gè)技術(shù)文章發(fā)表的是置換傳統(tǒng)石英諧振器的創(chuàng)新突破,此技術(shù)可以在芯片中內(nèi)建更小及更薄的定時(shí)器,而可以直接在智能卡或移動(dòng)電話SIM卡芯片上內(nèi)建定時(shí)器,進(jìn)一步強(qiáng)化智能卡的加密保護(hù)功能。
此外,該研究中心也將發(fā)表在晶體管上的創(chuàng)新突破,報(bào)告新一代晶體管的效能以及其在多方面的應(yīng)用。
恩智浦 –臺(tái)積電研究中心于IEDM所發(fā)表的七篇技術(shù)文章其創(chuàng)新突破簡(jiǎn)介如下:
*提高晶體管頻率 (High Frequency Breakthrough): A novel fully self-aligned SiGe:C HBT architecture featuring a single step epitaxial collector-base process
*簡(jiǎn)化便攜產(chǎn)品應(yīng)用的低耗電量CMOS制程 (Process Simplification for Low Power CMOS Processes for Portable Applications): Tuning PMOS Mo(O,N) metal gates to NMOS by addition of DyO capping layer
*新一代晶體管 (New Generation Transistor): Demonstration of high-performance FinFET devices featuring an optimized gatestack
*展現(xiàn)高效能CMOS制程 (Demonstration of High Performance Full CMOS Process): Low Vt CMOS using doped Hf-based oxides, TaC-based Metals and Laser-only Anneal
*創(chuàng)新的電路設(shè)計(jì),大幅降低功耗百分之八十 (Reducing Power Consumption Effectively by 80%): Rapid circuit-based optimization of low operational power CMOS devices
*更快速、更省電、尺寸更小的嵌入式存儲(chǔ)器 (Faster, Low Power, Scalable Embedded Memory): Evidence of the thermo-electric Thomson effect and influence on the program conditions and cell optimization in phase-range memory cells
*諧振器技術(shù)突破 (Resonator Technology Breakthrough): Scalable 1.1 GHz fundamental mode piezo-resistive silicon MEMS resonator