功率因數(shù)校正(PFC)是電源設(shè)計人員面臨的重要任務(wù)。根據(jù)IEC61000-3-2諧波標準中的D類規(guī)定,功率在75 W以上的個人計算機和電視機等電子系統(tǒng)的電源要進行功率因數(shù)校正。
根據(jù)輸入電流控制原理的不同,PFC可以分為不同的類型,如臨界導電模式(CrM)、不連續(xù)導電模式(DCM)、連續(xù)導電模式(CCM)和頻率鉗位臨界導電模式(FCCrM)等。CrM的的主要特征是電流有效值(RMS)大,開關(guān)頻率不固定,常用于需要簡單控制方案的照明和交流適配器等低功率應用,典型解決方案如安森美半導體NCP1606;DCM的主要特征是電流有效值最高,線圈電感較低及穩(wěn)定性最佳,常見于中低功率應用;CCM的主要特征是總是硬開關(guān),電感值最大,電流有效值最小,在較高功率(>300 W)應用中特別受到青睞,典型解決方案如安森美半導體NCP1654;FCCrM的主要特征是電流有效值大,頻率被限制,線圈電感較小,在中等功率條件下具有極高能效,典型解決方案如安森美半導體NCP1605。
值得一提的是,F(xiàn)CCrM可以視作帶有頻率鉗位功能(由振蕩器設(shè)定)的臨界導電模式,綜合了CrM和DCM的優(yōu)點:DCM限制最大開關(guān)頻率,而CrM降低最大電流應力??偟膩砜矗現(xiàn)CCrM解決方案似乎擁有最高的能效。
新的應用需求為PFC提出更高要求
一些新的應用需求推動著業(yè)界開發(fā)新的PFC技術(shù)。這其中頗為受人矚目的就是新興的能效標準要求計算機ATX電源具有越來越高的能效。例如,80 PLUS銀級標準(等同于“能源之星”5.0版計算機電源標準及CSCI標準第三階段目標)要求,到2010年6月,多路輸出ATX電源在20%、50%和100%負載條件的能效分別達到85%、88%和85%,詳見表1所示。
要提高ATX電源能效,以滿足最新能效標準的更高要求,重要的是以系統(tǒng)性的途徑來分析功率損耗來源,并針對性地降低功率損耗。通常而言,我們可以將ATX電源分為PFC段、主開關(guān)電源段和次轉(zhuǎn)換器段。以常見的75%能效ATX電源為例,據(jù)測算,PFC段的損耗要占總損耗的40%。因此,將PFC段的能效提至最高,有利于實現(xiàn)更高的系統(tǒng)總能效。這就需要優(yōu)化PFC控制器及其工作模式與其它元器件的選擇。
表1:80 PLUS等能效標準對多路輸出ATX電源的能效要求
此外,液晶電視市場近年來高速發(fā)展,而纖薄型設(shè)計則為液晶電視提供特別的賣點,受到消費者的青睞。最新的液晶電視設(shè)計更是趨向于將厚度降至10 mm以下,這就使元器件高度受到嚴格限制,設(shè)計人員必須盡可能采用更小型的元器件,并降低安裝高度。PFC段同樣受到這方面的制約,值得一提的是,縮小PFC段元器件能夠幫助系統(tǒng)降低高度。
在這些背景下,一些新的PFC拓撲結(jié)構(gòu)已經(jīng)開始涌現(xiàn)和應用。其中尤以交錯式PFC和無橋PFC為典型。我們將探討這兩種新PFC拓撲結(jié)構(gòu)的特征、解決方案及性能測試結(jié)果。
交錯式PFC的優(yōu)勢及解決方案
交錯式PFC的主要想法是在原本放置單個較大功率PFC的地方并行放置兩個功率為一半的較小功率的PFC,參見圖1。這兩個較小功率PFC以180°的相移交替工作,它們在輸入端或輸出端累加時,每相電流紋波的主要部分將抵消。雖然交錯式PFC使用較多的元器件,但其好處也很明顯,如150 W的PFC就比300 W的PFC更易于設(shè)計,便于采用模塊化的方案,且兩個DCM PFC就像一個CCM PFC轉(zhuǎn)換器,這就簡化電磁干擾(EMI)濾波,并減小輸入電流有效值。特別是采用兩個較小PFC的設(shè)計能夠支持厚度低至10 mm的超薄型液晶電視設(shè)計,且能效極高。
圖1:采用兩顆NCP1601 PFC控制器實現(xiàn)的交錯式PFC架構(gòu)的功能框圖。
交錯式PFC有兩種具體實現(xiàn)方案:一為主/從(Master/Slave)方案,一為獨立相位(Independent Phases)方案。主/從方案指主分支自由工作,而從分支相對于主分支180°相移工作。主/從方案的主要挑戰(zhàn)在于保持在CrM工作模式(沒有CCM模式,沒有死區(qū))。
獨立相位方案指每個相位都恰當?shù)毓ぷ髟贑rM或FCCrM模式,而兩個分支相互配合以設(shè)定180°相移。獨立相位方案的主要挑戰(zhàn)是保持準確的相移。安森美半導體的雙NCP1601交錯式PFC方案是一種獨特的FCCrM方案,適合輸入電壓范圍較寬的應用。在這種方案中,2顆NCP1601驅(qū)動2個獨立的PFC分支,這2個分支具有相同的導通時間因而具有相同的開關(guān)周期,它們同步但彼此獨立工作,從而保證DCM工作模式(零電流檢測),沒有CCM工作風險,且在滿載時兩個分支都進入CrM工作模式。[!--empirenews.page--]
圖2:安森美半導體雙NCP1601交錯式PFC方案在不同負載范圍下的能效。
對基于安森美半導體NCP1601交錯式PFC方案的寬輸入范圍、300 W PFC預轉(zhuǎn)換器進行的測試顯示,這解決方案在很寬的負載范圍內(nèi)(從20%到100%)、90 Vrms電壓條件下實現(xiàn)95%的能效,如圖2所示。
無橋PFC的優(yōu)勢及解決方案
傳統(tǒng)有源PFC中,交流輸入經(jīng)過EMI濾波后會經(jīng)過二極管橋整流器,但在整流過程中存在功率耗散,其中既包括前端整流橋中兩個二極管導通壓降帶來的損耗,也包括升壓轉(zhuǎn)換器中功率開關(guān)管或續(xù)流二極管的導通損耗。據(jù)測算,在低壓市電應用(@90 Vrms)中,二極管橋會浪費大約2%的能效。有鑒于此,近年來業(yè)界提出了無橋PFC拓撲結(jié)構(gòu)。實際上,如果去掉二極管整流橋,由此帶來的能效提升效果很明顯。這種PFC電路采用1只電感、兩只功率MOSFET和兩只快恢復二極管組成。
對于工頻交流輸入的正負半周期而言,這種無橋升壓電路可以等效為兩個電源電壓相反的升壓電路的組合。其中左邊的藍色方框是PH1為高電平、MOSFET開關(guān)管M2關(guān)閉時的開關(guān)單元,右邊的橙色方框是PH2為高電平、MOSFET開關(guān)管M1關(guān)閉時的開關(guān)單元。當PH1為高電平、PH2為低電平時,電路工作在正半周期,這時M2相當于體二極管(body diode),PH2通過M2接地;而當PH1為低電平、PH2為高電平時,電路工作在負半周期,這時M1相當于體二極管,PH1通過M1接地。
圖3:傳統(tǒng)的無橋PFC結(jié)構(gòu)示意圖。
相對于傳統(tǒng)PFC段而言,這種無橋PFC節(jié)省了由二極管整流橋?qū)е碌膿p耗,但不工作MOSFET的體二極管傳遞線圈電流。最終,這種結(jié)構(gòu)消除了線路電流通道中一個二極管的壓降,提升了能效。但實際上,這種架構(gòu)也存在幾處不便,因為交流線路電壓不像傳統(tǒng)PFC那樣對地參考,而是相對于PFC段接地而浮動,這就需要特定的PFC控制器來感測交流輸入電壓,而這種結(jié)構(gòu)中的簡單電路并不能完成這項任務(wù)。這種架構(gòu)也不能方便地監(jiān)測線圈電流。 此外,EMI濾波也是一個主要問題。
圖4是Ivo Barbi無橋升壓PFC架構(gòu)的新穎解決方案,這種方案中沒有全橋,相反,PFC電路的地通過二極管D1和D2連接至交流線路,且每個端子用于1個PFC段。故這種解決方案可視作2相PFC,其中2個分支并聯(lián)工作。這種架構(gòu)也省下了電流通道中的一個二極管,并因此提升了能效。這種2相式架構(gòu)并不需要特定的PFC控制器,具有增強的熱性能,且負相總是接地,解決了EMI問題。
圖4:改進的Ivo Barbi無橋升壓PFC架構(gòu)
安森美半導體基于這種架構(gòu)開發(fā)了800 W PFC段的原型。這原型采用NCP1653 PFC控制器及MC33152 MOSFET驅(qū)動器。經(jīng)測試,這原型在90 Vrms、滿載、無風扇(機箱打開,室 溫)條件下的能效達94%,而在100 Vrms時達95%。在20%負載時能效更接近或超過96%。這種無橋PFC架構(gòu)將是適合大功率應用的一種高能效解決方案。
總結(jié):
交錯式PFC和無橋PFC等新穎拓撲結(jié)構(gòu)的先進PFC技術(shù)可用于滿足功率大于75 W電源的新趨勢,有利于設(shè)計厚度低至10 mm以下的超薄型液晶電視,及滿足80 PLUS等能效標準越來越高的要求。安森美半導體身為全球領(lǐng)先的高性能、高能效硅解決方案供應商,提供基于NCP1601的交錯式PFC和基于NCP1653的無橋PFC等創(chuàng)新解決方案,具有小外形因數(shù),適用于緊湊型設(shè)計,并減少PFC段的功率損耗,提供極高的能效,符合嚴苛的能效標準要求,幫助客戶在市場競爭中占據(jù)先機。