功率MOSFET抗SEB能力的二維數(shù)值模擬
摘要:在分析了單粒子燒毀(SEB)物理機(jī)制及相應(yīng)仿真模型的基礎(chǔ)上,研究了無緩沖層MOSFET準(zhǔn)靜態(tài)擊穿特性曲線,明確了影響器件抗SEB能力的參數(shù)及決定因素。仿真研究了單緩沖層結(jié)構(gòu)MOSFET,表明低摻雜緩沖層可提高器件負(fù)阻轉(zhuǎn)折臨界電流,高摻雜緩沖層可改善器件二次擊穿電壓,據(jù)此提出一種多緩沖層結(jié)構(gòu),通過優(yōu)化摻雜濃度和厚度,使器件的抗SEB能力得到了顯著提高。仿真結(jié)果顯示,采用三緩沖層結(jié)構(gòu),二次擊穿電壓近似為無緩沖結(jié)構(gòu)的3倍,負(fù)阻轉(zhuǎn)折臨界電流提高近30倍。
關(guān)鍵詞:金屬氧化物場效應(yīng)晶體管;單粒子燒毀;二維數(shù)值模擬
1 引言
功率VDMOSFET晶體管以其開關(guān)速度快、輸入電阻高、頻率特性好、驅(qū)動能力高、跨導(dǎo)線性度高等特點,廣泛應(yīng)用在空間系統(tǒng)的電源電路中。但它在空間輻射環(huán)境中極易被重離子誘發(fā)SEB,造成功率變換器或電源電壓的劇烈波動,可導(dǎo)致衛(wèi)星的電子系統(tǒng)發(fā)生災(zāi)難性事故。國外對功率VDMOSFET的SEB效應(yīng)研究較多。而我國起步較晚,在理論和實驗上存在許多問題。
在此對功率MOSFET的SEB效應(yīng)的機(jī)理進(jìn)行了簡單分析,并針對600 V平面柵VDMOSFET,利用半導(dǎo)體器件模擬軟件Medici研究了緩沖層對提高M(jìn)OSFET抗SEB能力的影響,提出利用多緩沖層結(jié)構(gòu)改善MOSFET抗SEB能力的方案,最后給出一組優(yōu)化后的多緩沖層結(jié)構(gòu)。
2 SEB機(jī)理以及仿真物理模型
2.1 單粒子燒毀機(jī)制
SEB效應(yīng)主要發(fā)生在器件阻斷狀態(tài),由轟擊到MOSFET發(fā)生SEB的原理如圖1所示。重離子轟擊產(chǎn)生的電子空穴對中的電子,在電場作用下向漏接觸區(qū)(Drain Contact)移動,而空穴則在漏電場作用下沿跡線向p體區(qū)(p-body)運動,進(jìn)入p-body區(qū)之后,橫向運動,最后經(jīng)p-body接觸區(qū)流出。由于橫向空穴流產(chǎn)生壓降,致使遠(yuǎn)離電極接觸區(qū)的p-body部分電位升高,造成p體區(qū)/n源極(p-body/n-source)結(jié)正偏,觸發(fā)寄生npn晶體管的發(fā)射極向漂移區(qū)注入電子。由于此時MOSFET處于高壓阻斷態(tài),電子的注入會改變空間電荷分布,造成電子在n漂移區(qū)/n+襯底(n-drift/n+-sub)高低結(jié)的積累,空間電荷區(qū)收縮,n-drift/n+-sub高低結(jié)處電場強(qiáng)度增加。隨著重離子轟擊強(qiáng)度增加,等離子體絲流增大,寄生npn晶體管發(fā)射結(jié)正偏程度增強(qiáng),n-drift/n+-sub高低結(jié)處電場強(qiáng)度越來越高。當(dāng)該電場增加到一定程度時,會激發(fā)雪崩倍增效應(yīng),漂移區(qū)電流增大,進(jìn)而使寄生晶體管的發(fā)射結(jié)進(jìn)一步正偏,此正反饋效應(yīng)反復(fù)進(jìn)行,最終可導(dǎo)致器件因電流過大、溫度過高而燒毀。
從SEB的失效機(jī)理可見,抑制SEB效應(yīng)可從兩方面入手:①降低寄生晶體管的電流增益,削弱晶體管作用,主要包括背柵短路、進(jìn)行p+注入,增強(qiáng)源區(qū)下半導(dǎo)體導(dǎo)電能力、采用源區(qū)挖槽工藝,縮短源區(qū)寬度、減小寄生晶體管面積等:②優(yōu)化電場分布,提高n-drift/n+-sub高低結(jié)處雪崩倍增效應(yīng)發(fā)生的臨界電流。由于這方面的研究相對較少,且主要采用單緩沖層結(jié)構(gòu),故這里在單緩沖層仿真結(jié)果的基礎(chǔ)上,提出多緩沖層結(jié)構(gòu),并給出一組三緩沖層結(jié)構(gòu)的優(yōu)化結(jié)果。[!--empirenews.page--]
2.2 MOSFET抗SEB能力優(yōu)化仿真的物理模型
SEB的物理機(jī)制和實驗結(jié)果都表明,功率MOSFET的SEB效應(yīng)與其寄生晶體管VQ1的導(dǎo)通以及隨后器件的二次擊穿特性有重要關(guān)系,而與入射粒子的種類和劑量無直接關(guān)系,重離子的輻射只是一種觸發(fā)機(jī)制。因此,在SEB模型的建立中,可以將入射粒子的影響近似為它所引發(fā)的等離子體絲流在源極PN結(jié)上的偏壓。文獻(xiàn)通過將背柵短路的p源極和n源極分開,串聯(lián)不同的接觸電阻(Rp和Rn)來表征這種思想,如圖2所示,并經(jīng)實驗研究和仿真驗證了該方案的可行性。同時指出,器件的抗SEB能力直接由器件的二次擊穿特性決定。二次擊穿的電流和電壓越高,器件抗SEB能力越好。在此借鑒這種思想,通過器件仿真,明確緩沖層在抗SEB效應(yīng)中的作用,給出一種三緩沖層的優(yōu)化結(jié)構(gòu)。
器件仿真中采用了濃度溫度相關(guān)載流子遷移率模型、SRH復(fù)合模型、Auger復(fù)合模型以及碰撞離化和禁帶變窄模型,暫未考慮熱效應(yīng)。為了更接近實際情況,采用IR 600VN的結(jié)構(gòu),分別取接觸電阻Rp=2.5kΩ,Rn=250Ω。
3 緩沖層提高抗SEB能力的作用
3.1 無緩沖層
首先對普通無緩沖層MOSFET進(jìn)行了器件仿真,仿真結(jié)果如圖3所示,由圖可見,器件的靜態(tài)I-V特性存在3個拐點。
(1)A點對應(yīng)正常PN結(jié)擊穿,此時漂移區(qū)完全耗盡,空間電荷區(qū)載流子濃度近似為本征激發(fā)濃度,p-body/n-drift界面處電場最大,達(dá)到臨界擊穿值,如圖3b,c所示;
(2)隨著漏電流Id的增加,漂移區(qū)載流子濃度增加,n-drift/n+-sub高低結(jié)附近出現(xiàn)電子積累,該處電場增強(qiáng),直到電子和空穴的濃度達(dá)到背景摻雜濃度,此時漂移區(qū)承受的電壓達(dá)到最高,為B點。Id繼續(xù)增大,漂移區(qū)載流子濃度繼續(xù)增高,“耗盡層”收縮,電子積累層展寬,漂移區(qū)電場降低,器件承受的電壓下降,出現(xiàn)“負(fù)阻區(qū)”。B點電流為負(fù)阻轉(zhuǎn)折臨界電流IB,該電流越大,進(jìn)入二次擊穿需要的臨界輻照強(qiáng)度越高,器件抗SEB能力越強(qiáng)。IB是表征器件抗SEB能力的一個重要標(biāo)志;
(3)當(dāng)Id增加到一定程度,n-drift/n+-sub高低結(jié)附近電場達(dá)到臨界擊穿電場,發(fā)生二次擊穿,這就是C點。若C點電壓Uc高于器件反向阻斷時的工作電壓,則器件受輻照后不會誘發(fā)二次擊穿。因此Uc的高低,也是表征器件抗SEB能力的物理量,Uc越高,器件抗SEB能力越強(qiáng)。改善器件抗輻照能力,就是通過提高IB和Uc來實現(xiàn)。[!--empirenews.page--]
由圖3c,d可見,當(dāng)出現(xiàn)二次擊穿時,漂移區(qū)載流子濃度達(dá)到1017cm-3,漂移區(qū)電場大幅降低,導(dǎo)致Uc很低。如果在襯底與外延層間加一濃度低于此值而高于耐壓層的過渡層即緩沖層,緩沖層的耗盡會改變電場分布,緩沖層選擇合理,就會使漂移區(qū)電場在達(dá)到二次擊穿時具有較高值,從而改善二次擊穿特性,亦即改善抗SEB能力,這就是緩沖層技術(shù)的思想。
3.2 單緩沖層技術(shù)
對不同單緩沖層濃度下器件的靜態(tài)擊穿特性進(jìn)行了仿真,仿真結(jié)果如圖4所示。
(1)與無緩沖層結(jié)構(gòu)相比,單緩沖層MOSFET的擊穿特性曲線多了2個拐點E和F,E點對應(yīng)n漂移區(qū)/n緩沖層高低結(jié)擊穿電場達(dá)到最大,該點稱為二次擊穿點;之后緩沖層耗盡層擴(kuò)展,直至n漂移區(qū)/n緩沖層界面附近過剩載流子濃度達(dá)到緩沖層背景摻雜濃度,這就是F點。
(2)隨著緩沖層厚度增加,E,F(xiàn)點間距增大;反之亦然。當(dāng)緩沖層厚度小到一定程度,E,F(xiàn)點重合。E,F(xiàn)兩點重合,可作為厚度優(yōu)化的一個參考。
(3)隨著緩沖層濃度減小,E點向B點移動。當(dāng)緩沖層濃度低到一定程度,E點與B點重合,F(xiàn)點表觀取代B點,此時漂移區(qū)過剩載流子濃度達(dá)到緩沖層背景摻雜濃度,由于緩沖層濃度高于外延層濃度,從而使負(fù)阻轉(zhuǎn)折臨界電流IB提高,從3.47x10-5A/μm提高到1.37x10-4A/μm。
(4)隨著緩沖層濃度增加,E點向電壓負(fù)方向移動,C點向電壓正方向移動。當(dāng)緩沖層濃度增加到一定值,E點電位低于C點電位。E點的擊穿成為限制器件抗SEB能力的限制因素。因此,對于單緩沖層結(jié)構(gòu),存在一個最佳緩沖層濃度,由E,C兩點電壓相等獲得。若考慮厚度優(yōu)化(導(dǎo)通電阻優(yōu)化),則由C,E,F(xiàn) 3點重合得到一個仿真厚度。
3.3 多緩沖層技術(shù)
采用緩沖層結(jié)構(gòu),可改善電場分布,提高器件抗SEB能力。但對單緩沖層結(jié)構(gòu),優(yōu)化緩沖層摻雜濃度,或使IB提高,或使Uc達(dá)到最佳,無法使兩者同時得到改善,有必要采用多緩沖層結(jié)構(gòu)。利用低摻雜濃度緩沖層提高IB,利用高濃度緩沖層提高Uc,這就是多緩沖層技術(shù)的思想。
參考單緩沖層濃度優(yōu)化思想,對三緩沖層結(jié)構(gòu)進(jìn)行了仿真,結(jié)果如圖5所示。無緩沖層時,IB=3.47×10-5A/μm,Uc=186 V;單緩沖層時,IB=3.47×10-5 A/μm,Uc=355 V;三緩沖層時,IB=1.03×10-3A/μm,Uc=536 V。可見,與無緩沖層和單緩沖層相比,三緩沖層的IB和Uc均得到了很大改善。
4 結(jié)論
緩沖層結(jié)構(gòu)可改善器件抗SEB能力:低摻雜濃度緩沖層有利于提高負(fù)阻轉(zhuǎn)折臨界電流,高濃度緩沖層更利于提高二次擊穿電壓。高、低濃度緩沖層結(jié)構(gòu)相結(jié)合,可使器件負(fù)阻轉(zhuǎn)折臨界電流和二次擊穿電壓均得到改善。根據(jù)這一構(gòu)想,給出一種三緩沖層結(jié)構(gòu),通過優(yōu)化摻雜濃度和厚度,使器件抗SEB效應(yīng)的綜合能力提高。仿真結(jié)果顯示,采用三緩沖層結(jié)構(gòu),二次擊穿電壓近似為無緩沖層結(jié)構(gòu)的3倍,負(fù)阻轉(zhuǎn)折臨界電流提高近30倍。