APFC電路原理及其在通信電源系統(tǒng)中的應用
一、引言
在通信用開關電源系統(tǒng)中,為了減少輸入電流諧波,降低其對電網(wǎng)的污染,同時有利于后級DC-DC變換電路的穩(wěn)定工作,交流輸入側多采用有源功率因數(shù)校正技術。
提高功率因數(shù)最簡單的方法是無源補償法,但由于無源法中應用的器件體積大而笨重且性能指標不理想,目前最先進的方法是采用有源功率因數(shù)校正技術(APFC)。與無源校正相比,有源功率因數(shù)校正電路抑制諧波效果更明顯,總諧波含量可抑制在5%以內(nèi),功率因數(shù)可達到0.9以上,接近單位功率因數(shù)。
二、APFC電路的基本原理
單相有源功率因數(shù)校正電路的控制主要包括應用乘法器的電流連續(xù)工作方式(CCM)和射隨器的電流非連續(xù)工作方式(DCM)。輸出功率在700W以上電源目前主要以CCM方式為主,主電路拓撲多采用升壓(boost)變換器,這主要是由于boost變換器具有輸入電流小、效率高、輸入電壓范圍寬的優(yōu)點;同時儲能電感也可作為濾波器抑制RFI和EMI噪聲。基本工作原理見圖1,其中的boost變換器工作于CCM方式,可以看出,控制電路采用了電壓、電流雙閉環(huán)控制,電流反饋網(wǎng)絡的取樣信號是升壓變換器的電感電流,電壓反饋網(wǎng)絡的取樣信號是變換器的輸出電壓。正比于輸入電流的取樣信號與乘法器的輸出進行比較,經(jīng)處理轉換成PWM脈沖,控制功率管S導通或關斷。功率管導通后,電感電流線性上升。當取樣電流與參考電流相等時,控制器使功率管關斷,此時電感的自感電勢使二極管D導通,儲能電感L通過二極管D對電容C放電,電感電流線性下降。隨后第二個開關周期開始,重復上述過程。通過對電感電流進行采樣并實施控制,使電感電流的幅值與輸入電壓同相位的正弦參考信號成正比,從而達到功率因數(shù)校正的目的。同時根據(jù)輸出電壓反饋,利用乘法器電路來控制正弦電流,以獲得穩(wěn)定的電壓輸出。
圖1
三、關鍵電路設計與實例
實例中涉及到的有關設計數(shù)據(jù)有:
3.1功率級電路分析
由于穩(wěn)態(tài)時一個周期內(nèi)電感的平均電壓為零,即維持伏秒平衡,于是有
式中:
TON--功率管S導通時間
TOFF --功率管S關斷時間
輸出電壓
式中:D—功率管S的導通占空比,
因D總是小于1,所以
占空比
因輸入電壓
故
說明在半個電網(wǎng)周期內(nèi)占空比是時變的。且在電網(wǎng)電壓過零時達到最大,在電網(wǎng)電壓的峰值處降到最小。
其中電感電流為:
3.2輸出電壓的選擇
通常,輸出電壓要高于最大輸入電壓的峰值的10%左右。設D8D9 考慮器件耐壓等因素,可選擇380V。
3.3升壓儲能電感的設計
升壓儲能電感所需電感量是由開關紋波電流設計值決定,若允許較大的紋波,則可減少電感量。最壞情況出現(xiàn)在低電網(wǎng)電壓同時輸出最大負載時的峰值電流。PFC電感中的最大紋波電流,通常選擇為最大峰值線路電流的20%左右,即
由式(3)可得
設最小
若
則由上述(7)、(8)式得到
電感的設計還包括磁芯材料與規(guī)格的選用,以及銅損、鐵損估算等,因篇幅限制,本文不再詳述。[!--empirenews.page--]
3.4輸出電容設計
決定輸出電容的選擇因素有:電容耐壓、輸出電壓紋波、以及維持時間。通常
為15~50ms左右,典型值為30ms。因
式中維持負載工作的最小電壓=300V(由后級DC-DC變換器設計輸入決定),
于是輸出電容
因輸入功率是瞬時電壓與電流的乘積,故進入輸出電容的功率是正弦變化的,當輸入電壓高時儲存能量,輸入電壓低時則釋放能量以保持輸出功率不變。這一變化的能量流在輸出電容上引起二次諧波電壓紋波,故此,輸出電容必須承受與控制二次諧波電流,即紋波電流。
紋波電流
代入本例數(shù)據(jù)I=(0.707 870)/(380 0.95)=1.7A
根據(jù)輸出紋波電壓設計要求,結合紋波電流大小,計算輸出電容等效串聯(lián)電阻(ESR)值。
依據(jù)上述計算參數(shù)及耐壓要求,查手冊實際選用3支的電容并聯(lián)。
3.5功率器件選擇
開關管與二極管必須有足夠的電流、電壓裕量,以及足夠的開關速度,同時還應設法降低功耗與熱阻以保證電源可靠工作。
1) 功率MOSFET選擇依據(jù)
峰值電流
工程上常取
所選MOSFET的電流定額為
所選MOSFET的電壓定額為
對于輸出電壓小于400V的PFC電路,通常選用耐壓500V的MOSFET,本文實選器件為IRFP460(20A/500V)。
2) 功率二極管選擇依據(jù)
功率二極管電流定額為
代入實例相關參數(shù)
[!--empirenews.page--]
功率二極管電壓定額為
本例中實選器件為BYV29(9A/500V)
3.6電流取樣電阻R 的設計
APFC電路的輸出功率是由流過電流取樣電阻上的峰值電流決定的。
電流取樣電阻選擇應保證在低電網(wǎng)電壓輸入且最大負載條件下,其壓降?。ㄍǔP∮?V)、耗散功率小的要求,從而減少電網(wǎng)電壓損失且提高電源效率。
電流取樣電阻的取值由下式?jīng)Q定
在本例控制電路中
于是得到
3.7 雙閉環(huán)控制電路頻率補償
雙閉環(huán)控制目的是使輸入電流跟隨輸入電壓的變化,并使輸出紋波小、輸出電壓穩(wěn)定。
1)電流環(huán)的補償
電流環(huán)設計的目標是保證輸入電流以最小的相位與波形失真跟蹤輸入電壓,為此帶寬必須足夠大,同時為了電路穩(wěn)定,必須對電流環(huán)路進行補償。極點通常加到放大器接近開關頻率的響應點,以減少噪聲敏感度。本電路交越頻率選在10kHz。
2)電壓環(huán)的補償
電壓環(huán)的帶寬由輸入失真的總量決定,輸入失真由輸出紋波電壓造成。對電壓環(huán)的要求,實際上是為了保持輸入電流失真最小,同時電壓環(huán)必須適應輸入電壓以及負載電流的變化。通常該級帶寬大約為10Hz左右。環(huán)路響應太快,將干擾電流環(huán)的調(diào)整,引起輸入電流的畸變;響應過慢,在輸入電網(wǎng)以及負載變化時將會導致過高的瞬態(tài)輸出電壓。
3.8 實驗結果
根據(jù)上述理論,成功設計了一種通信用高頻開關整流模塊,功率因數(shù)校正的實驗結果如圖2、3所示。圖2中波形2表明輸入電流已校正為正弦波,輸入功率波形A為100Hz正弦波,驗證了上述的理論分析;圖3中“Limit[mA]”為標準限定值, “Measurement[mA]”為樣機實測值,測試數(shù)據(jù)表明輸入電流諧波得到了有效抑制。
圖2
圖3
四、結語
本文討論了APFC電路在通信用電源系統(tǒng)中的應用,著重分析了工作原理及設計過程。實驗結果表明實現(xiàn)了高功率因數(shù)的校正,測試指標達到了設計要求。