1、超級電容簡介
超級電容,又名電化學電容,雙電層電容器、黃金電容、法拉電容,是從上世紀七、八十年代發(fā)展起來的通過極化電解質(zhì)來儲能的一種電化學元件。
它不同于傳統(tǒng)的化學電源,是一種介于傳統(tǒng)電容器與電池之間、具有特殊性能的電源,主要依靠雙電層和氧化還原贗電容電荷儲存電能。但在其儲能的過程并不發(fā)生化學反應,這種儲能過程是可逆的,也正因為此超級電容器可以反復充放電數(shù)十萬次。
2、超級電容的結(jié)構(gòu)超級電容器結(jié)構(gòu)上的具體細節(jié)依賴于對超級電容器的應用和使用。由于制造商或特定的應用需求,這些材料可能略有不同。所有超級電容器的共性是,他們都包含一個正極,一個負極,及這兩個電極之間的隔膜,電解液填補由這兩個電極和隔膜分離出來的兩個的孔隙。
超級電容器的結(jié)構(gòu)如圖所示.是由高比表面積的多孔電極材料、集流體、多孔性電池隔膜及電解液組成。電極材料與集流體之間要緊密相連,以減小接觸電阻;隔膜應滿足具有盡可能高的離子電導和盡可能低的電子電導的條件,一般為纖維結(jié)構(gòu)的電子絕緣材料,如聚丙烯膜。電解液的類型根據(jù)電極材料的性質(zhì)進行選擇。
上圖中各部分為:(1):聚四氟乙烯載體;(2)(4):活性物質(zhì)壓在泡沫鎳集電極上;(3):聚丙烯電池隔膜。
超級電容器的部件從產(chǎn)品到產(chǎn)品可以有所不同。這是由超級電容器包裝的幾何結(jié)構(gòu)決定的。對于棱形或正方形封裝產(chǎn)品部件的擺放,內(nèi)部結(jié)構(gòu)是基于對內(nèi)部部件的設置,即內(nèi)部集電極是從每個電極的堆疊中擠出。這些集電極焊盤將被焊接到終端,從而擴展電容器外的電流路徑。
對于圓形或圓柱形封裝的產(chǎn)品,電極切割成卷軸方式配置。最后將電極箔焊接到終端,使外部的電容電流路徑擴展。
3、均壓控制原理文中超級電容均壓部分采用逆變器和變壓器均壓技術實現(xiàn)。
如圖2所示,均壓電路由超級電容組、變壓器、逆變器和升壓斬波電路4部分組成。圖中的二極管起到反向保護作用。通過控制信號S1、S2、S3、S4即可實現(xiàn)電壓均衡,并可將電壓高的超級電容中的能量轉(zhuǎn)移到電壓低的超級電容中。
假設有N個超級電容串聯(lián),將串聯(lián)超級電容組兩端總電壓通過升壓斬波電路接到逆變器的輸入端,以補償MOSFET及續(xù)流二極管上的導通壓降,逆變器的輸出接到匝數(shù)比為N的降壓變壓器的高壓側(cè),則低壓側(cè)將產(chǎn)生振幅為N個超級電容單體電壓平均值的方波。以該方波作為電壓源再次對每個超級電容單體進行充電。此時由于二極管的作用,只有單體電壓低于變壓器低壓側(cè)電壓值的超級電容才能進行充電。逆變器工作一段時間以后,即可完成超級電容的均壓。
升壓斬波電路的輸出電壓,即逆變器的輸入電壓Vi滿足:
Vi=Vc+N*Vd+2Vs(1)
式中:Vc為N個串聯(lián)超級電容兩端總電壓;Vd為續(xù)流二極管上的正向?qū)▔航担籚s為MOSFET上的導通壓降。
逆變部分采用5kHz的50%占空比的PWM波加入一定的死區(qū)時間來實現(xiàn),S1,S4采用同一組信號驅(qū)動,S2,S3采用另外一組信號驅(qū)動。
升壓斬波電路的控制信號采用20kHz的PWM波。
Boost變換器占空比公式
2DC/DC主電路及控制方式
控制電路采用一端穩(wěn)壓一端穩(wěn)流的方式進行充放電控制,當電路工作在buck充電方式時,超級電容端進行先恒流充電到Vsc,再恒壓充電;當電路工作在boost放電方式時,直流母線電樂端進行穩(wěn)壓控制。充放電環(huán)節(jié)采用PI控制法進行恒流或恒壓充、放電。
采用雙向buck/boost電路拓撲,控制策略是:
(1)當超級電容電壓Vc高于電容額定電壓Vcmax時,封鎖buck充電控制信號;當超級電容電壓Vc下降到電壓下線Vcmax時,封鎖boost放電控制信號。
(2)當超級電容電壓Vc在電壓下限Vcmax與最高電壓Vcmax之間時,DC/DC變換器能夠進行buck充電控制,或boost放電控制:進行buck還是boost需要根據(jù)直流母線電壓Vdc、電流Idc來決定。
(3)直流母線電壓Vdc高于設定高壓Vdcmax,進行buck充電控制;低于設定低壓Vdcmin,進行boost放電控制。母線電壓Vdc介于Vdcmax和Vdcmin之間是不動作,既不充電也不放電。
按照上述控制策略,得到如圖4的程序流程圖,其中5kHz逆變?yōu)榫鶋弘娐分械哪孀兤?,采?0%的PWM脈沖波來實現(xiàn),不需要復雜的控制算法。20kHz升壓模塊完成開關管S1信號的產(chǎn)生。需要通過電壓采集電路,得到串聯(lián)電容的總電壓。4個判斷模塊通過判斷Vdc和Vc的電壓范圍決定對電容的充放電控制。
5、仿真分析C1、C2初始電壓為2.7V,C3、C4為1V,仿真70s的時候基本均壓結(jié)束,電壓均衡到1.81V,由于電容并聯(lián)二極管的影響,電壓均衡點并沒有在算數(shù)平均值1.85V,并且升壓斬波器也消耗一部分能量。70s之后兩電容電壓基本保持同步變化。
圖6為均壓系統(tǒng)實物圖,由FPGA控制板,H橋逆變器以及驅(qū)動電路和Boost升壓電路組成,F(xiàn)PGA控制板采用實驗室自主開發(fā)的基于EP2C80208C8N芯片的開發(fā)板來完成控制信號的中生成,5個開關管采用IRF640,驅(qū)動芯片TR2103。通過仿真驗證了均壓系統(tǒng)的可行性。
6、結(jié)束語文中簡要介紹了應用超級電容所需要的幾項關鍵技術,并通過仿真和實物驗證,逆變采用50%占空比是為了使電壓較高的降壓速度與低壓電容的升壓速度相匹配,減少電能浪費。DC/DC充、放電模塊能實現(xiàn)對超級電容器組快速可靠充、放電,輸入功率大,保護可靠,充分發(fā)揮了超級電容的優(yōu)勢。