當(dāng)前位置:首頁(yè) > 電源 > 功率器件
[導(dǎo)讀]0 引 言 RF MEMS開關(guān)在隔離度、插入損耗、功耗以及線性度等方面,具有比FET或pin二極管傳統(tǒng)微波固態(tài)開關(guān)無法比擬的優(yōu)勢(shì),從而獲得了廣泛的關(guān)注,并顯示出在微波應(yīng)用領(lǐng)域

0 引 言

RF MEMS開關(guān)在隔離度、插入損耗、功耗以及線性度等方面,具有比FET或pin二極管傳統(tǒng)微波固態(tài)開關(guān)無法比擬的優(yōu)勢(shì),從而獲得了廣泛的關(guān)注,并顯示出在微波應(yīng)用領(lǐng)域的巨大潛力。自1979年K.E.Petersen第一次報(bào)道RF MEMS開關(guān)的應(yīng)用以來,業(yè)界已研制出很多不同結(jié)構(gòu)的RF MEMS開關(guān)。無論是在隔離度還是在插入損耗上,RFMEMS電容式并聯(lián)開關(guān)在Ka到W波段都表現(xiàn)出了良好的性能。但是,RF MEMS電容式開關(guān)在低頻段的較低隔離度限制了其在X波段的應(yīng)用。為克服以上不足,J.B.Muldavin等人提出了在開關(guān)梁與地平面之間加入高阻抗傳輸線,通過該傳輸線引入的串聯(lián)電感使LC諧振頻率達(dá)到X波段范圍,并獲得了在X波段隔離度優(yōu)于-20 dB的性能。J.Y.Park等人設(shè)計(jì)的RF MEMS電容式并聯(lián)開關(guān)使用介電常數(shù)為30~120的SrTiO3作為介質(zhì)層,通過增加開關(guān)閉態(tài)的電容值使開關(guān)在10GHz處的隔離度優(yōu)于-30 dB。M.Tang等人把CPW下電極放置在由KOH刻蝕、深度為1.6μm的襯底盆狀槽中,獲得了10~13 GHz頻率下,單個(gè)開關(guān)隔離度為-16.5~-28 dB,兩個(gè)開關(guān)級(jí)聯(lián)的隔離度為-25~-35 dB。

本文提出了一種通過CPW傳輸線與共面波導(dǎo)地平面間的襯底刻槽,提高隔離度并應(yīng)用于X波段的RF MEMS電容式并聯(lián)開關(guān)。該設(shè)計(jì)在不改變開關(guān)結(jié)構(gòu)和電路結(jié)構(gòu)的基礎(chǔ)上提高了開關(guān)的隔離性能,為基于CPW結(jié)構(gòu)的RF MEMS高性能電路設(shè)計(jì)提供了一種參考。

1 開關(guān)的設(shè)計(jì)

1.1 開關(guān)設(shè)計(jì)與微波特性分析

本文設(shè)計(jì)的電容式并聯(lián)開關(guān)結(jié)構(gòu)如圖1所示。電路采用共面波導(dǎo)(CPW)結(jié)構(gòu),開關(guān)末端的兩個(gè)錨區(qū)分別固定于CPW兩個(gè)地平面上,開關(guān)梁采用平板梁結(jié)構(gòu),位于CPW傳輸線上方2 μm處。開關(guān)梁與地平面之間加入短截高阻線可增加開關(guān)的串聯(lián)電感,從而降低諧振頻率,實(shí)現(xiàn)X波段頻率范圍內(nèi)更高的隔離度。

本文在CPW傳輸線與地平面間引入了兩條深度為20μm的襯底刻槽。由CPW傳輸線理論,當(dāng)圖1(b)所示的CPW電路結(jié)構(gòu)中傳輸線寬度W增加時(shí),傳輸線與地平面間距G減小,CPW的分布電容CCPW增大,有


CPW的有效介電常數(shù)εeff、相速vph和特征阻抗Z0分別表示為

綜合以上分析,CPW特征阻抗隨傳輸線寬度的增加而減小。通過文獻(xiàn)[7]、[8]對(duì)襯底刻槽的分析,在保持電路幾何參數(shù)不改變的情況下,CPW特征阻抗隨刻槽深度的增加而增加。因此,可以在不改變傳輸線特征阻抗的情況下,通過選擇合適的刻槽深度來增加CPW傳輸線的寬度,從而可以有效減小因傳輸線導(dǎo)體損耗引起的信號(hào)衰減。
另外,CPW傳輸線寬度的增加同時(shí)也增大了RF MEMS開關(guān)處于下拉狀態(tài)時(shí)與傳輸線上面介質(zhì)層的接觸面積,從而增大了開關(guān)在關(guān)態(tài)時(shí)對(duì)射頻信號(hào)的短路電容,有利于提高隔離度。

如圖2(a)所示,當(dāng)開關(guān)處于開態(tài)時(shí),梁與傳輸線之間的開態(tài)電容較小,對(duì)射頻信號(hào)形成開路。如圖2(b)所示,當(dāng)開關(guān)處于關(guān)態(tài)時(shí),傳輸線上接觸部分厚度為150 nm的Si3N4介質(zhì)層隔離直流電壓,并且可以產(chǎn)生較大的閉態(tài)電容,對(duì)射頻信號(hào)形成短路。

圖3為開關(guān)的等效電路模型,其中Z0為CPW傳輸線輸入輸出特征阻抗;C為開關(guān)梁與傳輸線間的電容,它隨開關(guān)的工作狀態(tài)而改變;LS與RS分別為開關(guān)梁的等效電感和電阻;L1為開關(guān)梁與地平面間的短截高阻線引入的串聯(lián)電感。開關(guān)的諧振頻率f0由式(5)給出,其中L為總的串聯(lián)電感。本文中經(jīng)過優(yōu)化設(shè)計(jì)的短截高阻線尺寸為150μm×60 μm,開關(guān)在閉態(tài)時(shí)獲得了13.5 GHz的諧振頻率。

圖4(a)為本文設(shè)計(jì)的π型調(diào)諧開關(guān)電路,襯底刻槽位于傳輸線與地平面之間,圖中l(wèi)和z分別為高阻傳輸線的長(zhǎng)度和寬度。圖4(b)為其等效電路模型。π型匹配電路可以在得到寬帶匹配的同時(shí),還能在適當(dāng)?shù)拈_態(tài)電容下獲得很高的隔離度。高阻傳輸線位于兩并聯(lián)開關(guān)之間可實(shí)現(xiàn)阻抗匹配。π型調(diào)諧電路開態(tài)下的隔離度可以近似表示為:

式中,Cd為閉態(tài)電容,βl和Zh分別為高阻傳輸線電長(zhǎng)度和阻抗。

1.2開關(guān)機(jī)械性能分析

當(dāng)在開關(guān)梁與傳輸線中心導(dǎo)體之間施加直流偏置電壓時(shí),梁上的靜電力使其離開初始平衡位置向下運(yùn)動(dòng)。當(dāng)直流偏置電壓達(dá)到閾值電壓時(shí),開關(guān)下降到上下電極初始間距的2/3處進(jìn)入不穩(wěn)定狀態(tài),并使開關(guān)迅速被吸引致閉合,即"pull-in"現(xiàn)象。其中,閾值電壓

式中:k為梁的等效彈性系數(shù);ε0為空氣的介電常數(shù);W為CPW中心傳輸線的寬度;ω為開關(guān)梁中心極板的寬度;g0為梁與下電極的間距。等效彈性系數(shù)k可以表達(dá)為
式中:E為梁材料的楊氏模量;t為彈性梁的厚度;Lm為梁的長(zhǎng)度;σ為梁的殘余應(yīng)力;v為梁材料的泊松比。

為減小梁的彈性系數(shù)從而使執(zhí)行電壓降低,本文采用了圖5所示的兩個(gè)彎曲的彈簧梁結(jié)構(gòu)。其中,一個(gè)彎曲的彈簧梁的等效彈性系數(shù)可以表達(dá)為

2 結(jié)果與討論

本文使用有限元軟件IntelliSuite對(duì)開關(guān)模型進(jìn)行機(jī)械特性分析。CPW和開關(guān)梁材料均為Au;Si襯底上熱氧化生長(zhǎng)形成厚度為400 nm的SiO2用作電氣隔離層;犧牲層采用PSG(磷硅玻璃),通過濕法刻蝕釋放該犧牲層;襯底刻槽使用KOH溶液濕法刻蝕得到。表1給出了仿真過程中開關(guān)的材料特性與結(jié)構(gòu)參數(shù)。

圖6是開關(guān)梁位移隨上極板與下極板間電勢(shì)差的變化曲線。從圖6(a)可以看出,平板梁開關(guān)結(jié)構(gòu)的執(zhí)行電壓為26 V。由圖6(b)可知彈簧梁開關(guān)結(jié)構(gòu)的執(zhí)行電壓降低到14 V。

本文使用HFSS軟件對(duì)開關(guān)的微波傳輸性能進(jìn)行分析。圖7是平板梁開關(guān)結(jié)構(gòu)S參數(shù)隨頻率的變化曲線,可以獲得襯底刻槽結(jié)構(gòu)的RF MEMS電容式并聯(lián)開關(guān)在閉態(tài)時(shí),5~30 GHz下S11小于-0.25 dB,隔離度在諧振頻率13.5 GHz處為-54.6 dB,,相比于虛線所示的傳統(tǒng)結(jié)構(gòu)開關(guān)-47.2dB的隔離度,本文設(shè)計(jì)的襯底刻槽使開關(guān)的隔離度性能在諧振頻率處提高7 dB。

圖8為彈簧梁開關(guān)結(jié)構(gòu)的S參數(shù)仿真結(jié)果,可以看出由彈簧梁結(jié)構(gòu)引入的串聯(lián)電感使諧振頻率降低至11 GHz,在諧振點(diǎn)處的隔離度為-42.8 dB。從圖中可以看出,是否具有襯底刻槽結(jié)構(gòu)對(duì)彈簧梁開關(guān)的S參數(shù)曲線影響不大,僅在20 GHz以后的頻段獲得了輕微的隔離性能改善。襯底刻槽對(duì)彈簧梁結(jié)構(gòu)RF MEMS開關(guān)的隔離度性能改善不大的原因,可能是彈簧梁結(jié)構(gòu)引入了較大的串聯(lián)電感和串聯(lián)電阻,增加了傳輸損耗。

圖9為π型調(diào)諧開關(guān)電路的S參數(shù)隨頻率的變化曲線。如圖所示,采用彈簧梁開關(guān)結(jié)構(gòu)的電路在諧振頻率11.5 GHz處獲得了-81.6dB的隔離度。相對(duì)于彈簧梁結(jié)構(gòu),采用平板梁開關(guān)結(jié)構(gòu)的π型調(diào)諧電路在諧振頻率14 GHz處的隔離度為-72 dB,并且在較寬的帶寬范圍內(nèi)具有更高的隔離性能。

3 結(jié) 論

本文設(shè)計(jì)并分析了一種通過襯底刻槽提高RFMEMS電容式并聯(lián)開關(guān)隔離度的新型結(jié)構(gòu)。使用有限元軟件IntelliSuite和HFSS分析了該結(jié)構(gòu)的機(jī)械特性和微波性能,平板梁開關(guān)結(jié)構(gòu)的執(zhí)行電壓約為26 V,開關(guān)關(guān)態(tài)時(shí)在13.5 GHz諧振頻率處的隔離度為-54.6 dB,相比沒有襯底刻槽的并聯(lián)開關(guān)隔離度提高了7 dB。采用彈簧梁結(jié)構(gòu)的開關(guān)的執(zhí)行電壓下降為14 V,隔離度在11 GHz處為-42.8 GHz。為獲得更高的隔離性能,本文分析了π型調(diào)諧開關(guān)電路,采用平板梁和彈簧梁開關(guān)結(jié)構(gòu)的電路分別在14 GHz和11.5 GHz處獲得了-72 dB和-81.6 dB的隔離度。所設(shè)計(jì)的開關(guān)通過添加襯底刻蝕工藝程序,增大了RF MEMS開關(guān)電路的隔離度,有利于提高單片射頻微波電路的集成度和隔離度性能。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉