當(dāng)前位置:首頁 > 模擬 > ADI
[導(dǎo)讀]不言而喻,PC電路板的布局設(shè)計決定了每一種電源設(shè)計的成敗。它決定了一個電源的功能、電磁干擾(EMI)和熱行為。雖然開關(guān)電源布局不是黑魔法,但在設(shè)計過程中會經(jīng)常被忽視,最終發(fā)現(xiàn)其至關(guān)重要卻為時已晚。因此需要一種行之有效的方法,從一開始就削弱這些潛在的EMI威脅,方能確保電源安靜而穩(wěn)定。雖然許多開關(guān)模式電源設(shè)計人員都很清楚開關(guān)模式電源的設(shè)計復(fù)雜性和細(xì)微差別,但很多公司根本沒有足夠的設(shè)計人員滿足所有項目需求完成設(shè)計。不少設(shè)計人員將退休并離開此行業(yè)!那么,如何解決這個問題呢?

簡介

不言而喻,PC電路板的布局設(shè)計決定了每一種電源設(shè)計的成敗。它決定了一個電源的功能、電磁干擾(EMI)和熱行為。雖然開關(guān)電源布局不是黑魔法,但在設(shè)計過程中會經(jīng)常被忽視,最終發(fā)現(xiàn)其至關(guān)重要卻為時已晚。因此需要一種行之有效的方法,從一開始就削弱這些潛在的EMI威脅,方能確保電源安靜而穩(wěn)定。雖然許多開關(guān)模式電源設(shè)計人員都很清楚開關(guān)模式電源的設(shè)計復(fù)雜性和細(xì)微差別,但很多公司根本沒有足夠的設(shè)計人員滿足所有項目需求完成設(shè)計。不少設(shè)計人員將退休并離開此行業(yè)!那么,如何解決這個問題呢?

首先,就是因為模擬電源設(shè)計人員不足,所以要求越來越多的數(shù)字設(shè)計人員進(jìn)行開關(guān)模式電源設(shè)計!雖然大多數(shù)數(shù)字設(shè)計人員都知道如何使用簡單的線性穩(wěn)壓器,但并非所有設(shè)計都要求降壓(降壓模式)。事實上,很多是升壓模式(升壓),甚至是降壓-升壓拓?fù)?降壓和升壓模式相結(jié)合)。

顯然,許多電子系統(tǒng)制造商都面臨一個問題:如何實現(xiàn)系統(tǒng)所需的所有開關(guān)模式電源電路?

解決設(shè)計資源短缺問題

在本文中,我將介紹降壓穩(wěn)壓器工作的一些基本原理,包括開關(guān)穩(wěn)壓器熱回路中的高di/dt和寄生電感如何導(dǎo)致電磁噪聲和開關(guān)振鈴。然后我們將看看如何減少高頻噪聲。我還將介紹ADI的Power by Linear? Silent Switcher?技術(shù),包括它如何構(gòu)成,并演示它如何幫助解決EMI問題,且絲毫不會影響性能。其中還包括Silent Switcher器件如何工作。

我還將概述Silent Switcher的封裝和布局,討論這些封裝和布局如何提高降壓轉(zhuǎn)換器的整體性能。此外,我將演示如何將此技術(shù)融入我們的μModule?穩(wěn)壓器,從而提高Silent Switcher器件的集成度。對于不熟悉開關(guān)模式電源設(shè)計技術(shù)的設(shè)計人員,這些簡單易用的解決方案會很有用。

基本降壓穩(wěn)壓器電路

最基本的電源拓?fù)渲皇墙祲悍€(wěn)壓器,如圖1所示。EMI從高di/dt回路開始。供電線和負(fù)載線不應(yīng)具有高交流電流分量。因此,輸入電容C2應(yīng)將所有相關(guān)電流的交流分量傳輸至輸出電容C1,所有電流交流分量在這里結(jié)束。

234905-fig-01.jpg

圖1.同步降壓穩(wěn)壓器原理圖

參考圖1,在M1關(guān)閉而M2打開的開啟周期中,交流電流在實線藍(lán)色回路中流動。在關(guān)閉周期中,當(dāng)M1打開而M2關(guān)閉時,交流電流在綠色虛線回路中流動。大多數(shù)人難以理解,產(chǎn)生最高EMI的回路既不是實線藍(lán)色回路,也不是虛線綠色回路。而是虛線紅色回路中流動的全開關(guān)交流電流,從零切換至I峰值,再回到零。虛線紅色回路通常指熱回路,因為它有最高交流電流和EMI能量。

導(dǎo)致電磁噪聲和開關(guān)振鈴的是開關(guān)穩(wěn)壓器熱回路中的高di/dt和寄生電感。要減少EMI并改進(jìn)功能,需要盡量減少虛線紅色回路的輻射效應(yīng)。如果我們能夠?qū)⑻摼€紅色回路的PC電路板面積減少到零,并且能夠買到具有零阻抗的理想電容,就能解決這個問題。然而,在現(xiàn)實世界中,設(shè)計工程師所能做的就是找到一個最佳的折中方案!

那么,這些高頻噪聲到底是從哪里來的呢?在電子電路中,通過寄生電阻、電感和電容耦合,在開關(guān)轉(zhuǎn)換過程中,產(chǎn)生了高頻諧波。知道是哪里產(chǎn)生噪聲,那么如何減少高頻開關(guān)噪聲呢?減少噪聲的傳統(tǒng)方式是減慢MOSFET開關(guān)邊緣。通過減慢內(nèi)部開關(guān)驅(qū)動器或從外部添加緩沖器,就可以實現(xiàn)。

234905-fig-02.jpg

圖2.如何將LT8610轉(zhuǎn)換為Silent Switcher器件——LT8614

但是,這會降低轉(zhuǎn)換器的效率,因為增加了開關(guān)損耗——特別是當(dāng)開關(guān)穩(wěn)壓器在高開關(guān)頻率(如2 MHz)下運(yùn)行時。說到這里,我們?yōu)楹我? MHz的頻率下運(yùn)行呢?實際上有幾個原因:

? 它允許使用較小(尺寸)的外部元件,如電容和電感。例如,每次開關(guān)頻率加倍,會使電感值和輸出電容值減半。

? 在汽車應(yīng)用中,在2 MHz下開關(guān)可以避免在AM頻段產(chǎn)生噪聲。

減小輻射,也可使用濾波器和屏蔽,但這需要更多的外部元件和電路板面積。還可采用展頻(SSFM)技術(shù),但這樣在已知范圍內(nèi)會使系統(tǒng)時鐘抖動。SSFM有助于滿足EMI標(biāo)準(zhǔn)要求。EMI能量被打散分布在頻域上。雖然普通開關(guān)電源所選的開關(guān)頻率通常會在AM頻段之外(530 kHz至1.8 MHz),但在AM頻段內(nèi),未經(jīng)調(diào)制的開關(guān)諧波仍可能不符合嚴(yán)格的汽車EMI要求。添加SSFM功能可明顯減少AM頻段內(nèi)及其他區(qū)域中的EMI。

或者就使用ADI的Silent Switcher技術(shù),該技術(shù)能夠滿足上述所有要求:

? 高效率

? 高開關(guān)頻率

? 低電磁輻射(EMI)

Silent Switcher技術(shù)

Silent Switcher器件無需減慢開關(guān)邊緣速率,解決了EMI和效率之間的權(quán)衡問題。那么如何才能實現(xiàn)呢?考慮使用LT8610,如圖2左側(cè)所示。這是支持42 V輸入的單片(內(nèi)部有FET)同步降壓轉(zhuǎn)換器,可提供高達(dá)2.5 A的輸出電流。請注意,其左上角有一個輸入引腳(VIN)。

但是,將LT8610與LT8614(支持42 V輸入的單片同步降壓轉(zhuǎn)換器,可提供高達(dá)4 A的輸出電流)相比,我們可以看到,LT8614在封裝的另一側(cè)有兩個VIN引腳和兩個接地引腳。這很重要,因為它是實現(xiàn)超低噪聲開關(guān)的一部分!

如何使開關(guān)穩(wěn)壓器具有超低噪聲

如何實現(xiàn)這個目標(biāo)?在芯片另一側(cè)的VIN和接地引腳之間放置兩個輸入電容可消除磁場?;脽羝型怀鲲@示了這一點,在原理圖和演示板上均用紅色箭頭指向電容的位置,如圖3所示。

234905-fig-03.jpg

圖3.LT8614圖,顯示濾波器電容安置在IC另一側(cè)的VIN和接地引腳之間

LT8614詳情

LT8614包含Silent Switcher功能。利用該功能,我們通過使用銅柱倒裝芯片封裝能夠減少寄生電感。此外,還有反向VIN、接地和輸入電容,可消除磁場(適用右手法則)以降低EMI輻射。

由于不需要使用焊線鍵合式裝配技術(shù)所要求的長鍵合線,不會產(chǎn)生大的寄生電阻和電感,從而可減小封裝寄生電感。兩個對稱分布的輸入熱回路產(chǎn)生的反向磁場相互抵消,并且電回路沒有凈磁場。

我們將LT8614 Silent Switcher穩(wěn)壓器與當(dāng)前先進(jìn)的開關(guān)穩(wěn)壓器LT8610進(jìn)行比較。在GTEM室中,對兩個器件的標(biāo)準(zhǔn)演示板使用相同負(fù)載、相同輸入電壓和相同電感進(jìn)行了測試。我們發(fā)現(xiàn),與使用LT8610具有很不錯的EMI性能相比,使用LT8614時還能提高20 dB,特別是在管理更高頻率更困難的區(qū)域。在整體設(shè)計中,與其他敏感系統(tǒng)相比,LT8614開關(guān)電源需要的濾波更少、距離更短,從而可以實現(xiàn)更簡單緊湊的設(shè)計。此外,在時域內(nèi),LT8614在開關(guān)節(jié)點邊緣的性能良好。

234905-fig-04.jpg

圖4.LT8614輻射EMI性能可滿足最嚴(yán)格的CISPR 25 Class 5限制要求

Silent Switcher器件的進(jìn)一步增強(qiáng)

盡管LT8614具有出色的性能,但我們并沒有停止改進(jìn)的步伐。于是,LT8640降壓穩(wěn)壓器采用Silent Switcher架構(gòu),旨在最大限度地減少EMI/EMC輻射,同時在高達(dá)3 MHz的頻率下提供高效率。它采用3 mm × 4 mm QFN封裝,采用集成電源單片式結(jié)構(gòu),同時提供所有必需的電路功能,共同構(gòu)成PCB占用空間最小的解決方案。瞬變態(tài)響應(yīng)性能仍然很出色,任何負(fù)載(從零電流到滿電流)時的輸出電壓紋波低于10 mV p-pat。LT8640允許在高頻率下進(jìn)行高VIN到低VOUT轉(zhuǎn)換,最短開關(guān)導(dǎo)通時間為30 ns。

為改進(jìn)EMI/EMC,LT8640可工作在展頻模式。該功能以20%的三角調(diào)頻調(diào)整時鐘。當(dāng)LT8640處于展頻調(diào)制模式時,使用三角調(diào)頻功能在RT設(shè)定值與約高于該值20%之間調(diào)整開關(guān)頻率。調(diào)制頻率約為3 kHz。例如,當(dāng)LT8640設(shè)為2 MHz時,3 kHz速率下的頻率將從2 MHz至2.4 MHz不等。選擇展頻工作模式時,突發(fā)模式(Burst Mode?)操作會禁用,器件將在脈沖跳躍模式或強(qiáng)制連續(xù)模式下運(yùn)行。

然而,盡管我們在Silent Switcher數(shù)據(jù)手冊中都有說明,如提供了原理圖和布局建議,以及將輸入電容放在盡可能靠近IC兩側(cè)的位置——有一些客戶仍然會出錯。此外,我們的內(nèi)部工程師也花了太多的時間來解決客戶的PCB布局問題。因此,我們的設(shè)計人員提出了解決此問題的最佳解決方案——Silent Switcher 2架構(gòu)。

Silent Switcher 2

采用Silent Switcher 2技術(shù),我們只需將電容集成在新LQFN封裝內(nèi):VIN電容、IntVCC和升壓電容——盡可能靠近引腳放置。優(yōu)勢是將所有熱回路和接地層都包括在內(nèi),從而降低了EMI。外部元件越少,解決方案尺寸就越小。此外,我們還消除了PCB布局敏感性。

如圖5所示,可以看出LT8640和LT8640S的原理圖有何不同。而營銷突破口是為包含內(nèi)部電容的集成度更高的新版本冠以“S”的后綴。因為它比第一代更“安靜”!

234905-fig-05.jpg

圖5.LT8640S是一款具有更高的電容集成度的Silent Switcher 2器件

Silent Switcher 2技術(shù)提高了散熱性能。LQFN倒裝芯片封裝上的多個大尺寸接地裸露焊盤有助于封裝和PCB散熱。由于我們消除了高電阻鍵合線,因此還提高了轉(zhuǎn)換效率。LT8640S的EMI性能輕松滿足輻射EMI性能CISPR 25 Class 5峰值限制要求并且有較大的裕量。

下一步:所有組件都與Silent Switcher 2 μModule穩(wěn)壓器集成

Silent Switcher技術(shù)如此引人注目,我們選擇將其融入我們的μModule穩(wěn)壓器產(chǎn)品線。所有組件都集成在一個小尺寸封裝中,為用戶提供了一個簡單可靠、高性能和高電源密度的解決方案。 LTM8053和LTM8073是幾乎集成了所有組件的微型模塊穩(wěn)壓器,只有少量電容和電阻接在外部。

234905-fig-06.jpg

圖6.LTM8053 Silent Switcher 2 μModule

總結(jié)

綜上所述,Silent Switcher功能和優(yōu)勢將使您的開關(guān)模式電源設(shè)計更容易滿足CISPR 32和CISPR 25等各種抗噪標(biāo)準(zhǔn)要求。它們能夠輕松有效地做到這一點是由于以下特性:

? 能夠在大于2 MHz開關(guān)頻率下進(jìn)行高效轉(zhuǎn)換,并且對轉(zhuǎn)換效率的影響最小。

? 內(nèi)部旁路電容減少EMI輻射并提供更緊湊的解決方案占板空間。

? 采用Silent Switcher 2技術(shù)基本上消除了PCB布局的敏感性。

? 可選展頻調(diào)制有助于降低噪聲敏感度。

? 使用Silent Switcher器件既可節(jié)省PCB面積,又可減少所需的層數(shù)。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉