matlab的BP神經(jīng)網(wǎng)絡(luò)例子程序
掃描二維碼
隨時(shí)隨地手機(jī)看文章
??
1. BP神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)實(shí)例?
??
例1. 采用動(dòng)量梯度下降算法訓(xùn)練BP 網(wǎng)絡(luò)。?
訓(xùn)練樣本定義如下:?
輸入矢量為?????
p =[-1 -2 3? 1;-1? 1 5 -3]?
目標(biāo)矢量為?? t = [-1 -1 1 1]?
解:本例的 MATLAB 程序如下:??
close all??
clear??
echo on??
clc??
% NEWFF——生成一個(gè)新的前向神經(jīng)網(wǎng)絡(luò)??
% TRAIN——對(duì) BP 神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練??
% SIM——對(duì) BP 神經(jīng)網(wǎng)絡(luò)進(jìn)行仿真??
pause?????????
%? 敲任意鍵開始??
clc??
%? 定義訓(xùn)練樣本??
% P 為輸入矢量??
P=[-1,? -2,??? 3,??? 1;?????? -1,??? 1,??? 5,? -3];?
% T 為目標(biāo)矢量??
T=[-1, -1, 1, 1];??
pause;??
clc??
%? 創(chuàng)建一個(gè)新的前向神經(jīng)網(wǎng)絡(luò)??
net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')?
%? 當(dāng)前輸入層權(quán)值和閾值??
inputWeights=net.IW{1,1}??
inputbias=net.b{1}??
%? 當(dāng)前網(wǎng)絡(luò)層權(quán)值和閾值??
layerWeights=net.LW{2,1}??
layerbias=net.b{2}??
pause??
clc??
%? 設(shè)置訓(xùn)練參數(shù)??
net.trainParam.show = 50;??
net.trainParam.lr = 0.05;??
net.trainParam.mc = 0.9;??
net.trainParam.epochs = 1000;??
net.trainParam.goal = 1e-3;??
pause??
clc??
%? 調(diào)用 TRAINGDM 算法訓(xùn)練 BP 網(wǎng)絡(luò)??
[net,tr]=train(net,P,T);??
pause??
clc??
%? 對(duì) BP 網(wǎng)絡(luò)進(jìn)行仿真??
A = sim(net,P)??
%? 計(jì)算仿真誤差??
E = T - A??
MSE=mse(E)??
pause??
clc??
echo off??
例2. 采用貝葉斯正則化算法提高 BP 網(wǎng)絡(luò)的推廣能力。在本例中,我們采用兩種訓(xùn)練方法,即 L-M 優(yōu)化算法(trainlm)和貝葉斯正則化算法(trainbr),用以訓(xùn)練 BP 網(wǎng)絡(luò),使其能夠擬合某一附加有白噪聲的正弦樣本數(shù)據(jù)。其中,樣本數(shù)據(jù)可以采用如下MATLAB 語句生成:??
輸入矢量:P = [-1:0.05:1];??
目標(biāo)矢量:randn(’seed’,78341223);??
T = sin(2*pi*P)+0.1*randn(size(P));??
解:本例的 MATLAB 程序如下:??
close all??
clear??
echo on??
clc??
% NEWFF——生成一個(gè)新的前向神經(jīng)網(wǎng)絡(luò)??
% TRAIN——對(duì) BP 神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練?
% SIM——對(duì) BP 神經(jīng)網(wǎng)絡(luò)進(jìn)行仿真??
pause?????????
%? 敲任意鍵開始??
clc??
%? 定義訓(xùn)練樣本矢量??
% P 為輸入矢量??
P = [-1:0.05:1];??
% T 為目標(biāo)矢量??
randn('seed',78341223); T = sin(2*pi*P)+0.1*randn(size(P));??
%? 繪制樣本數(shù)據(jù)點(diǎn)??
plot(P,T,'+');??
echo off??
hold on;??
plot(P,sin(2*pi*P),':');?????????
%? 繪制不含噪聲的正弦曲線??
echo on??
clc??
pause??
clc??
%? 創(chuàng)建一個(gè)新的前向神經(jīng)網(wǎng)絡(luò)??
net=newff(minmax(P),[20,1],{'tansig','purelin'});??
pause??
clc??
echo off??
clc?
disp('1.? L-M 優(yōu)化算法 TRAINLM'); disp('2.? 貝葉斯正則化算法 TRAINBR');??
choice=input('請(qǐng)選擇訓(xùn)練算法(1,2):');??
figure(gcf);??
if(choice==1)??????????????????
??? echo on??????????
??? clc??????????
??? %? 采用 L-M 優(yōu)化算法 TRAINLM??
??? net.trainFcn='trainlm';??????????
??? pause??????????
??? clc??????????
??? %? 設(shè)置訓(xùn)練參數(shù)??????????
??? net.trainParam.epochs = 500;??????????
??? net.trainParam.goal = 1e-6;??????????
??? net=init(net);?????????
??? %? 重新初始化????????????
??? pause??????????
??? clc?
elseif(choice==2)??????????
??? echo on??????????
??? clc??????????
??? %? 采用貝葉斯正則化算法 TRAINBR??????????
??? net.trainFcn='trainbr';??????????
??? pause??????????
??? clc??????????
??? %? 設(shè)置訓(xùn)練參數(shù)??????????
??? net.trainParam.epochs = 500;??????????
??? randn('seed',192736547);??????????
??? net = init(net);?????????
??? %? 重新初始化????????????
??? pause??????????
??? clc??????????
end???
??
??
例2. % 調(diào)用相應(yīng)算法訓(xùn)練 BP 網(wǎng)絡(luò)?
[net,tr]=train(net,P,T);?
pause?
clc?
% 對(duì) BP 網(wǎng)絡(luò)進(jìn)行仿真?
A = sim(net,P);?
% 計(jì)算仿真誤差?
E = T - A;?
MSE=mse(E)?
pause?
clc?
% 繪制匹配結(jié)果曲線?
close all;?
plot(P,A,P,T,'+',P,sin(2*pi*P),':');?
pause;?
clc?
echo off?
??????? 通過采用兩種不同的訓(xùn)練算法,我們可以得到兩種擬合結(jié)果。圖中的實(shí)線表示擬合曲線,虛線代表不含白噪聲的正弦曲線,“+”點(diǎn)為含有白噪聲的正弦樣本數(shù)據(jù)點(diǎn)。顯然,經(jīng) trainlm 函數(shù)訓(xùn)練后的神經(jīng)網(wǎng)絡(luò)對(duì)樣本數(shù)據(jù)點(diǎn)實(shí)現(xiàn)了“過度匹配”,而經(jīng) trainbr 函數(shù)訓(xùn)練的神經(jīng)網(wǎng)絡(luò)對(duì)噪聲不敏感,具有較好的推廣能力。??
????????? 值得指出的是,在利用 trainbr 函數(shù)訓(xùn)練 BP 網(wǎng)絡(luò)時(shí),若訓(xùn)練結(jié)果收斂,通常會(huì)給出提示信息“Maximum MU reached”。此外,用戶還可以根據(jù) SSE 和 SSW 的大小變化情況來判斷訓(xùn)練是否收斂:當(dāng) SSE 和 SSW 的值在經(jīng)過若干步迭代后處于恒值時(shí),則通常說明網(wǎng)絡(luò)訓(xùn)練收斂,此時(shí)可以停止訓(xùn)練。觀察trainbr 函數(shù)訓(xùn)練 BP 網(wǎng)絡(luò)的誤差變化曲線,可見,當(dāng)訓(xùn)練迭代至 320 步時(shí),網(wǎng)絡(luò)訓(xùn)練收斂,此時(shí) SSE 和 SSW 均為恒值,當(dāng)前有效網(wǎng)絡(luò)的參數(shù)(有效權(quán)值和閾值)個(gè)數(shù)為
11.7973。?
例3 采用“提前停止”方法提高 BP 網(wǎng)絡(luò)的推廣能力。對(duì)于和例 2相同的問題,在本例中我們將采用訓(xùn)練函數(shù) traingdx 和“提前停止”相結(jié)合的方法來訓(xùn)練 BP 網(wǎng)絡(luò),以提高 BP 網(wǎng)絡(luò)的推廣能力。?
解:在利用“提前停止”方法時(shí),首先應(yīng)分別定義訓(xùn)練樣本、驗(yàn)證樣本或測(cè)試樣本,其中,驗(yàn)證樣本是必不可少的。在本例中,我們只定義并使用驗(yàn)證樣本,即有?
驗(yàn)證樣本輸入矢量:val.P = [-0.975:.05:0.975]?
驗(yàn)證樣本目標(biāo)矢量:val.T = sin(2*pi*val.P)+0.1*randn(size(val.P))?
??????? 值得注意的是,盡管“提前停止”方法可以和任何一種 BP 網(wǎng)絡(luò)訓(xùn)練函數(shù)一起使用,但是不適合同訓(xùn)練速度過快的算法聯(lián)合使用,比如 trainlm 函數(shù),所以本例中我們采用訓(xùn)練速度相對(duì)較慢的變學(xué)習(xí)速率算法 traingdx 函數(shù)作為訓(xùn)練函數(shù)。?
本例的 MATLAB 程序如下:?
close all?
clear?
echo on?
clc?
% NEWFF——生成一個(gè)新的前向神經(jīng)網(wǎng)絡(luò)?
% TRAIN——對(duì) BP 神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練?
% SIM——對(duì) BP 神經(jīng)網(wǎng)絡(luò)進(jìn)行仿真?
pause?
% 敲任意鍵開始?
clc?
% 定義訓(xùn)練樣本矢量?
% P 為輸入矢量?
P = [-1:0.05:1];?
% T 為目標(biāo)矢量?
randn('seed',78341223);?
T = sin(2*pi*P)+0.1*randn(size(P));?
% 繪制訓(xùn)練樣本數(shù)據(jù)點(diǎn)?
plot(P,T,'+');?
echo off?
hold on;?
plot(P,sin(2*pi*P),':'); % 繪制不含噪聲的正弦曲線?
echo on?
clc?
pause?
clc?
% 定義驗(yàn)證樣本?
val.P = [-0.975:0.05:0.975]; % 驗(yàn)證樣本的輸入矢量?
val.T = sin(2*pi*val.P)+0.1*randn(size(val.P)); % 驗(yàn)證樣本的目標(biāo)矢量?
pause?
clc?
% 創(chuàng)建一個(gè)新的前向神經(jīng)網(wǎng)絡(luò)?
net=newff(minmax(P),[5,1],{'tansig','purelin'},'traingdx');?
pause?
clc?
% 設(shè)置訓(xùn)練參數(shù)?
net.trainParam.epochs = 500;?
net = init(net);?
pause?
clc?
% 訓(xùn)練 BP 網(wǎng)絡(luò)?
[net,tr]=train(net,P,T,[],[],val);?
pause?
clc?
% 對(duì) BP 網(wǎng)絡(luò)進(jìn)行仿真?
A = sim(net,P);?
% 計(jì)算仿真誤差?
E = T - A;?
MSE=mse(E)?
pause?
clc?
% 繪制仿真擬合結(jié)果曲線?
close all;?
plot(P,A,P,T,'+',P,sin(2*pi*P),':');?
pause;?
clc?
echo off?
????????? 下面給出了網(wǎng)絡(luò)的某次訓(xùn)練結(jié)果,可見,當(dāng)訓(xùn)練至第 136 步時(shí),訓(xùn)練提前停止,此時(shí)的網(wǎng)絡(luò)誤差為 0.0102565。給出了訓(xùn)練后的仿真數(shù)據(jù)擬合曲線,效果是相當(dāng)滿意的。?
[net,tr]=train(net,P,T,[],[],val);?
TRAINGDX, Epoch 0/500, MSE 0.504647/0, Gradient 2.1201/1e-006?
TRAINGDX, Epoch 25/500, MSE 0.163593/0, Gradient 0.384793/1e-006?
TRAINGDX, Epoch 50/500, MSE 0.130259/0, Gradient 0.158209/1e-006?
TRAINGDX, Epoch 75/500, MSE 0.086869/0, Gradient 0.0883479/1e-006?
TRAINGDX, Epoch 100/500, MSE 0.0492511/0, Gradient 0.0387894/1e-006?
TRAINGDX, Epoch 125/500, MSE 0.0110016/0, Gradient 0.017242/1e-006?
TRAINGDX, Epoch 136/500, MSE 0.0102565/0, Gradient 0.01203/1e-006?
TRAINGDX, Validation stop.