早在1968年,美國IBM公司的大林就提出了一種不同于常規(guī)PID控制規(guī)律的新型算法,即大林算法。該算法的最大特點(diǎn)是將期望的閉環(huán)響應(yīng)設(shè)計(jì)成一階慣性加純延遲,然后反過來得到能滿足這種閉環(huán)響應(yīng)的控制器。對(duì)于如下圖所示
交流電動(dòng)機(jī)伺服驅(qū)動(dòng)系統(tǒng)由于其結(jié)構(gòu)簡單、易于維護(hù)的優(yōu)點(diǎn)逐漸成為現(xiàn)代產(chǎn)業(yè)的基礎(chǔ)[1]。其中交流伺服系統(tǒng)在機(jī)器人與操作機(jī)械手的關(guān)節(jié)驅(qū)動(dòng)以及精密數(shù)控機(jī)床等方面得到越來越廣泛的應(yīng)用。交流伺服系統(tǒng)由交流電動(dòng)機(jī)組成,交流電動(dòng)機(jī)的數(shù)字模型不是簡單的線性模型,而具有非線性、時(shí)變、耦合等特點(diǎn),用傳統(tǒng)的基于對(duì)象模型的控制方法難以進(jìn)行有效的控制。
本文介紹的中藥提取監(jiān)控系統(tǒng),利用PROFIBUS技術(shù)構(gòu)建底層網(wǎng)絡(luò),對(duì)每個(gè)關(guān)鍵工序進(jìn)行數(shù)據(jù)監(jiān)測、控制,實(shí)施整個(gè)過程的跟蹤。系統(tǒng)既能進(jìn)行單元操作,又能找出最佳工況條件,該系統(tǒng)已經(jīng)成為中心的科研人員從事天然藥物生產(chǎn)工藝研究、中試開發(fā)的有效手段并在實(shí)際應(yīng)用中取得良好的效果。
1 引言 現(xiàn)代高性能作戰(zhàn)飛機(jī)普遍采用推力矢量技術(shù),各種高空高速高機(jī)動(dòng)再人彈頭的威脅愈顯突出,這對(duì)傳統(tǒng)氣動(dòng)舵控制的導(dǎo)彈系統(tǒng)提出新的要求。現(xiàn)代導(dǎo)彈要求能夠選擇攻擊目標(biāo),具有一定的抗干擾能力,實(shí)現(xiàn)全天候作
摘 要:以電加熱爐為控制對(duì)象,提出一種基于BP神經(jīng)網(wǎng)絡(luò)的PID控制策略。針對(duì)BP網(wǎng)絡(luò)學(xué)習(xí)速度的緩慢性及較差的泛化能力,受Fletcher-Reeves線性搜索方法的指引,對(duì)傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)進(jìn)行改進(jìn),改善算法在訓(xùn)練過程中的收
1 引言 傳統(tǒng)的PID控制器結(jié)構(gòu)簡單,穩(wěn)定性好,可靠性高,制造技術(shù)成熟,已廣泛應(yīng)用于工業(yè)生產(chǎn)過程的控制中。但它主要適用于控制具有確切模型的線性過程,而對(duì)于具有非線性、大滯后和時(shí)變不確定的系統(tǒng),則無法達(dá)到理
隨著人們對(duì)電質(zhì)量要求的日益增高,電力電子交流波形精確控制技術(shù)成為電力電子技術(shù)的研究熱點(diǎn)之一。他的主要研究目標(biāo)是使被控量精確跟蹤參考量,并減小電力電子系統(tǒng)交流側(cè)的諧波畸變。為了獲得高質(zhì)量的正弦輸出電壓波形,人們將現(xiàn)代控制理論應(yīng)用到逆變電源系統(tǒng)的控制中,提出了很多基于調(diào)制策略的控制方法。 PID控制是一種建立在經(jīng)典控制理論基礎(chǔ)上的控制策略,由于其結(jié)構(gòu)簡單、穩(wěn)定性好、工作可靠、調(diào)整方便而成為工業(yè)控制的主要技術(shù)之一,長期以來廣泛應(yīng)用于工業(yè)過程控制的各個(gè)領(lǐng)域。然而,常規(guī)PID控制有許多不完善之處,如控制器的參數(shù)在整定好以后,一般不能隨著控制系統(tǒng)的實(shí)時(shí)狀況而改變,動(dòng)態(tài)響應(yīng)比較慢等。 本文將模糊自適應(yīng)整定PID控制策略引入逆變電源控制,通過對(duì)被控對(duì)象的參數(shù)檢測,運(yùn)用模糊推理,實(shí)現(xiàn)對(duì)PID參數(shù)的實(shí)時(shí)調(diào)整,以達(dá)到最佳控制效果。通過仿真實(shí)驗(yàn)證明,模糊自適應(yīng)整定PID控制改善了逆變電源系統(tǒng)的穩(wěn)定性能,提高了輸出波形的質(zhì)量,使系統(tǒng)兼具良好的動(dòng)、靜態(tài)性能。
隨著人們對(duì)電質(zhì)量要求的日益增高,電力電子交流波形精確控制技術(shù)成為電力電子技術(shù)的研究熱點(diǎn)之一。他的主要研究目標(biāo)是使被控量精確跟蹤參考量,并減小電力電子系統(tǒng)交流側(cè)的諧波畸變。為了獲得高質(zhì)量的正弦輸出電壓波形,人們將現(xiàn)代控制理論應(yīng)用到逆變電源系統(tǒng)的控制中,提出了很多基于調(diào)制策略的控制方法。 PID控制是一種建立在經(jīng)典控制理論基礎(chǔ)上的控制策略,由于其結(jié)構(gòu)簡單、穩(wěn)定性好、工作可靠、調(diào)整方便而成為工業(yè)控制的主要技術(shù)之一,長期以來廣泛應(yīng)用于工業(yè)過程控制的各個(gè)領(lǐng)域。然而,常規(guī)PID控制有許多不完善之處,如控制器的參
本設(shè)計(jì)進(jìn)行了電子節(jié)氣門控制系統(tǒng)的電控單元開發(fā)、傳感器信號(hào)處理電路及執(zhí)行器功率驅(qū)動(dòng)電路的硬件電路設(shè)計(jì),并進(jìn)行了PID控制試驗(yàn)。
本設(shè)計(jì)進(jìn)行了電子節(jié)氣門控制系統(tǒng)的電控單元開發(fā)、傳感器信號(hào)處理電路及執(zhí)行器功率驅(qū)動(dòng)電路的硬件電路設(shè)計(jì),并進(jìn)行了PID控制試驗(yàn)。